product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
HLA-DR Monoclonal Antibody (LN3), eBioscience
catalog :
14-9956-82
quantity :
100 µg
price :
US 134.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
LN3
reactivity :
human, mouse
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 61
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; mouse; 1:200; loading ...; fig s3
Claes C, Danhash E, Hasselmann J, Chadarevian J, Shabestari S, England W, et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer's disease. Mol Neurodegener. 2021;16:50 pubmed publisher
  • immunohistochemistry; mouse; 1:750
Borggrewe M, Kooistra S, Wesseling E, Gierschek F, Brummer M, Nowak E, et al. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol Commun. 2021;9:91 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:1000; loading ...; fig 2-a3
Rohr S, Greiner T, Joost S, Amor S, Valk P, Schmitz C, et al. Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells. 2020;9: pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 1
Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed publisher
  • immunohistochemistry; human; 1:1000; loading ...; fig 2f
Gorter R, Nutma E, Jahrei M, de Jonge J, Quinlan R, van der Valk P, et al. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol. 2018;194:137-152 pubmed publisher
  • flow cytometry; human; fig 3
Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed publisher
  • flow cytometry; human
Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed publisher
  • immunocytochemistry; human
Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol. 2014;193:4335-43 pubmed publisher
  • flow cytometry; human
Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F, Liu H, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol. 2014;193:1622-35 pubmed publisher
  • flow cytometry; human
Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed publisher
  • flow cytometry; human
Saulep Easton D, Vincent F, Le Page M, Wei A, Ting S, Croce C, et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia. 2014;28:2005-15 pubmed publisher
  • flow cytometry; human
Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed publisher
Pehrson I, Sayyab S, Das J, Idh N, Paues J, M xe9 ndez Aranda M, et al. The spectrum of tuberculosis described as differential DNA methylation patterns in alveolar macrophages and alveolar T cells. Clin Epigenetics. 2022;14:175 pubmed publisher
Claes C, England W, Danhash E, Kiani Shabestari S, Jairaman A, Chadarevian J, et al. The P522R protective variant of PLCG2 promotes the expression of antigen presentation genes by human microglia in an Alzheimer's disease mouse model. Alzheimers Dement. 2022;18:1765-1778 pubmed publisher
Miedema A, Gerrits E, Brouwer N, Jiang Q, Kracht L, Meijer M, et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol Commun. 2022;10:8 pubmed publisher
Wong S, Oshansky C, Guo X, Ralston J, Wood T, Reynolds G, et al. Activated CD4+ T cells and CD14hiCD16+ monocytes correlate with antibody response following influenza virus infection in humans. Cell Rep Med. 2021;2:100237 pubmed publisher
Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed publisher
He C, Sun S, Zhang Y, Xie F, Li S. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating the HMGB1-RAGE-MAPK axis in pancreatic cancer. Oncoimmunology. 2021;10:1897295 pubmed publisher
Fan Y, Sun J, Zhang Q, Lai D. Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model. Stem Cell Res Ther. 2021;12:207 pubmed publisher
Bharat A, Querrey M, Markov N, Kim S, Kurihara C, Garza Castillon R, et al. Lung transplantation for patients with severe COVID-19. Sci Transl Med. 2020;12: pubmed publisher
McQuade A, Kang Y, Hasselmann J, Jairaman A, Sotelo A, Coburn M, et al. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer's disease. Nat Commun. 2020;11:5370 pubmed publisher
Ni H, Zhang L, Huang H, Dai S, Li J. Connecting METTL3 and intratumoural CD33+ MDSCs in predicting clinical outcome in cervical cancer. J Transl Med. 2020;18:393 pubmed publisher
Oliveira A, Pereira M, Belew A, Ferreira L, Pereira L, Neves E, et al. Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruzi strains unveil a role for fibroblasts in neutrophil recruitment and activation. PLoS Pathog. 2020;16:e1008781 pubmed publisher
Hampton D, Amor S, Story D, Torvell M, Bsibsi M, van Noort J, et al. HspB5 Activates a Neuroprotective Glial Cell Response in Experimental Tauopathy. Front Neurosci. 2020;14:574 pubmed publisher
Jørgensen N, Sayed A, Jeppesen H, Persson G, Weisdorf I, Funck T, et al. Characterization of HLA-G Regulation and HLA Expression in Breast Cancer and Malignant Melanoma Cell Lines upon IFN-γ Stimulation and Inhibition of DNA Methylation. Int J Mol Sci. 2020;21: pubmed publisher
Amacker M, Smardon C, Mason L, Sorrell J, Jeffery K, Adler M, et al. New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. NPJ Vaccines. 2020;5:41 pubmed publisher
Deng Q, Huang S, Wen J, Jiao Y, Su X, Shi G, et al. PF-127 hydrogel plus sodium ascorbyl phosphate improves Wharton's jelly mesenchymal stem cell-mediated skin wound healing in mice. Stem Cell Res Ther. 2020;11:143 pubmed publisher
Esfahani K, Al Aubodah T, Thebault P, Lapointe R, Hudson M, Johnson N, et al. Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun. 2019;10:4712 pubmed publisher
Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed publisher
Xiu W, Ma J, Lei T, Zhang M. AG490 reverses phenotypic alteration of dendritic cells by bladder cancer cells. Oncol Lett. 2018;16:2851-2856 pubmed publisher
Balan S, Arnold Schrauf C, Abbas A, Couespel N, Savoret J, Imperatore F, et al. Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity. Cell Rep. 2018;24:1902-1915.e6 pubmed publisher
Kaisar M, Ritter M, del Fresno C, Jónasdóttir H, van der Ham A, Pelgrom L, et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol. 2018;16:e2005504 pubmed publisher
Ventura Ferreira M, Bienert M, Muller K, Rath B, Goecke T, Opländer C, et al. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem Cell Res Ther. 2018;9:28 pubmed publisher
Terranova Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017;8:114156-114172 pubmed publisher
Shiraki A, Kotooka N, Komoda H, Hirase T, Oyama J, Node K. Pentraxin-3 regulates the inflammatory activity of macrophages. Biochem Biophys Rep. 2016;5:290-295 pubmed publisher
Cheung A, Kwok H, Huang Y, Chen M, Mo Y, Wu X, et al. Gut-homing ?42PD1+V?2 T cells promote innate mucosal damage via TLR4 during acute HIV type 1 infection. Nat Microbiol. 2017;2:1389-1402 pubmed publisher
Raj D, Yin Z, Breur M, Doorduin J, Holtman I, Olah M, et al. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. Front Mol Neurosci. 2017;10:206 pubmed publisher
Bryant A, Moore D, Burdo T, Lakritz J, Gouaux B, Soontornniyomkij V, et al. Plasma soluble CD163 is associated with postmortem brain pathology in human immunodeficiency virus infection. AIDS. 2017;31:973-979 pubmed publisher
Pathangey L, McCurry D, Gendler S, Dominguez A, Gorman J, Pathangey G, et al. Surrogate in vitro activation of innate immunity synergizes with interleukin-7 to unleash rapid antigen-driven outgrowth of CD4+ and CD8+ human peripheral blood T-cells naturally recognizing MUC1, HER2/neu and other tumor-associated antigens. Oncotarget. 2017;8:10785-10808 pubmed publisher
Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports. 2016;7:619-634 pubmed publisher
van der Aa E, Buschow S, Biesta P, Janssen H, Woltman A. The Effect of Chronic Hepatitis B Virus Infection on BDCA3+ Dendritic Cell Frequency and Function. PLoS ONE. 2016;11:e0161235 pubmed publisher
Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed publisher
Lee K, Yu J, Shim D, Choi H, Jang M, Kim K, et al. Local Immune Responses in Children and Adults with Allergic and Nonallergic Rhinitis. PLoS ONE. 2016;11:e0156979 pubmed publisher
Phuah J, Wong E, Gideon H, Maiello P, Coleman M, Hendricks M, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun. 2016;84:1301-1311 pubmed publisher
Brown P, Wong K, Felce S, Lyne L, Spearman H, Soilleux E, et al. FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas. Leukemia. 2016;30:605-16 pubmed publisher
Taborda N, González S, Alvarez C, Correa L, Montoya C, Rugeles M. Higher Frequency of NK and CD4+ T-Cells in Mucosa and Potent Cytotoxic Response in HIV Controllers. PLoS ONE. 2015;10:e0136292 pubmed publisher
Van Eyck L, De Somer L, Pombal D, Bornschein S, Frans G, Humblet Baron S, et al. Brief Report: IFIH1 Mutation Causes Systemic Lupus Erythematosus With Selective IgA Deficiency. Arthritis Rheumatol. 2015;67:1592-7 pubmed publisher
Cho K, Morris D, Delproposto J, Geletka L, Zamarron B, Martinez Santibañez G, et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep. 2014;9:605-17 pubmed publisher
Vogel D, Vereyken E, Glim J, Heijnen P, Moeton M, van der Valk P, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation. 2013;10:35 pubmed publisher
van de Laar L, van den Bosch A, Boonstra A, Binda R, Buitenhuis M, Janssen H, et al. PI3K-PKB hyperactivation augments human plasmacytoid dendritic cell development and function. Blood. 2012;120:4982-91 pubmed publisher
Yeager M, Nguyen C, Belchenko D, Colvin K, Takatsuki S, Ivy D, et al. Circulating myeloid-derived suppressor cells are increased and activated in pulmonary hypertension. Chest. 2012;141:944-952 pubmed publisher
Bruinsma I, de Jager M, Carrano A, Versleijen A, Veerhuis R, Boelens W, et al. Small heat shock proteins induce a cerebral inflammatory reaction. J Neurosci. 2011;31:11992-2000 pubmed publisher
Wuest S, Edwan J, Martin J, Han S, Perry J, CARTAGENA C, et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17:604-9 pubmed publisher
Kwajah M M S, Schwarz H. CD137 ligand signaling induces human monocyte to dendritic cell differentiation. Eur J Immunol. 2010;40:1938-49 pubmed publisher
Kavousanaki M, Makrigiannakis A, Boumpas D, Verginis P. Novel role of plasmacytoid dendritic cells in humans: induction of interleukin-10-producing Treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding to therapy. Arthritis Rheum. 2010;62:53-63 pubmed publisher
Ingersoll M, Spanbroek R, Lottaz C, Gautier E, Frankenberger M, Hoffmann R, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115:e10-9 pubmed publisher
Fullen D, Headington J. Factor XIIIa-positive dermal dendritic cells and HLA-DR expression in radial versus vertical growth-phase melanomas. J Cutan Pathol. 1998;25:553-8 pubmed
Hua Z, Tanaka K, Tazelaar H, Myers J, Markowitz G, Borczuk A. Immunoreactivity for LN2 and LN3 distinguishes small cell carcinomas from non-small cell carcinomas in the lung. Hum Pathol. 1998;29:1441-6 pubmed
Ioachim H, Pambuccian S, Hekimgil M, Giancotti F, Dorsett B. Lymphoid monoclonal antibodies reactive with lung tumors. Diagnostic applications. Am J Surg Pathol. 1996;20:64-71 pubmed
Norton A, Isaacson P. Detailed phenotypic analysis of B-cell lymphoma using a panel of antibodies reactive in routinely fixed wax-embedded tissue. Am J Pathol. 1987;128:225-40 pubmed
Davey F, Olson S, Kurec A, Eastman Abaya R, Gottlieb A, Mason D. The immunophenotyping of extramedullary myeloid cell tumors in paraffin-embedded tissue sections. Am J Surg Pathol. 1988;12:699-707 pubmed
product information
Product Type :
Antibody
Product Name :
HLA-DR Monoclonal Antibody (LN3), eBioscience
Catalog # :
14-9956-82
Quantity :
100 µg
Price :
US 134.00
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Mouse
Reactivity :
Human
Applications :
Flow Cytometry: 0.125 µg/test, Immunohistochemistry (Frozen): Assay-Dependent, Immunohistochemistry (Paraffin): 1 µg/mL, Western Blot: 1:1000
Species :
Human
Clone :
LN3
Isotype :
IgG2b, kappa
Storage :
4° C
Description :
HLA-DR, like other MHC class II molecules, is a transmembrane glycoprotein composed of a 36 kDa alpha chain (DRA) and 27 kDa beta chain (DRB). The alpha chain gene contains 5 exons. Exon 1 encodes the leader peptide, exons 2 and 3 encode the two extracellular domains, and exon 4 encodes the transmembrane domain and the cytoplasmic tail. DRA does not have polymorphisms in the peptide binding part and acts as the sole alpha chain for DRB1, DRB3, DRB4 and DRB5. Within the DR molecule the beta chain contains all the polymorphisms specifying the peptide binding specificities. Hundreds of DRB1 alleles have been described and typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. HLA-DR is expressed primarily on antigen presenting cells such as B lymphocytes, monocytes, macrophages, thymic epithelial cells and activated T lymphocytes. Three loci, DR, DQ and DP, encode the major expressed products of the human class II region. The human MHC class II molecules bind intracellularly processed peptides, present them to T-helper cells, and have a critical role in the initiation of the immune response. HLA and MHC antibodies play a significant role in Immunopeptidomics, facilitating the identification and characterization of neoantigens through high-performance liquid chromatography coupled to tandem Mass Spectrometry.
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: 0.125 µg/test, Immunohistochemistry (Frozen): Assay-Dependent, Immunohistochemistry (Paraffin): 1 µg/mL, Western Blot: 1:1000
Aliases :
AI323765; BLA-DRB3; BOLA-DRA; BoLA-DR-alpha; BoLA-DRB; BOLA-DRB3; BoLA-DRB3 protein; BoLA-DRB3.2; Bota-DRB01; Bota-DRB02; Bota-DRB04; Bota-DRB07; Bota-DRB21; Bota-DRB22; bovine leukocyte antigen; Cd74; CD74 antigen; CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated); CD74 molecule; Cd74 molecule, major histocompatibility complex, class II invariant chain; class II-associated invariant chain peptide; CLIP; Clone P2-beta-3; DASS-397D15.1; DHLAG; dinucleotide microsatellite; DLA class II histocompatibility antigen, DR-1 beta chain; DLA DRBB1 beta chain; DLA-DR beta; DLA-DRB1; DLA-DRBB1; DR beta-5; DR beta-chain antigen binding domain; DR-16; DR2-beta-2; DR4; DR-4; DR7; DR9; DR-9; DRB; DRB1; DRB1 transplantation antigen; DRB3; DRB4; DRBB1; DR-beta chain; DR-beta chain MHC class II; DRw10; Dw2; DW2.2/DR2.2; E-alpha-f; FLJ51114; FLJ75017; FLJ76359; gamma chain of class II antigens; H-2 class II histocompatibility antigen gamma chain; H-2 class II histocompatibility antigen, E-D alpha chain; H-2 class II histocompatibility antigen, E-K alpha chain; H-2 class II histocompatibility antigen, E-U alpha chain; H-2Ea; H2-Ea; H2-Ea-ps; H2-IE-alpha; histocompatibility 2, class II antigen E alpha; histocompatibility 2, class II antigen E alpha, pseudogene; histocompatibility antigen HLA-DR alpha; histocompatibility complex, class II, DR beta 3; histocompatibility: class II antigens, gamma chain of; HLA class II histocompatibility antigen gamma chain; HLA class II histocompatibility antigen, DR alpha chain; HLA class II histocompatibility antigen, DR beta 3 chain; HLA class II histocompatibility antigen, DR beta 4 chain; HLA class II histocompatibility antigen, DR beta 5 chain; HLA class II histocompatibility antigen, DR-1 beta chain; HLA class II histocompatibility antigen, DR-5 beta chain; HLA class II histocompatibility antigen, DRB1-15 beta chain; HLA class II histocompatibility antigen, DRB1-16 beta chain; HLA class II histocompatibility antigen, DRB1-3 chain; HLA class II histocompatibility antigen, DRB1-7 beta chain; HLA class II histocompatibility antigen, DRB1-9 beta chain; HLADG; HLA-DR antigens-associated invariant chain; HLA-DR1B; HLA-DR3B; HLA-DR4B; HLA-DRA; HLA-DRA1; HLA-DRB; HLA-DRB1; HLA-DRB2; HLA-DRB3; HLA-DRB4; HLA-DRB5; HLA-DR-gamma; human leucocyte antigen DRB1; human leucocyte antigen DRB3; human leucocyte antigen DRB4; human leucocyte antigen DRB5; ia antigen-associated invariant chain; Ia3; Ia-3; Ia-associated invariant chain; Ia-GAMMA; I-E alpha MHC class II; I-Ealpha; II; integral membrane glycoprotein; invariant gamma chain; invariant polypeptide of major histocompatibility complex, class II antigen-associated; INVG34; LA-DRB; leukocyte antigen; leukocyte antigen class II; leukocyte antigen DRB3; lymphocyte antigen DRB1; major histocompatibility complex class II DR-beta chain; major histocompatibility complex, class II, DR alpha; major histocompatibility complex, class II, DR alpha precursor; major histocompatibility complex, class II, DR beta 1; major histocompatibility complex, class II, DR beta 3; major histocompatibility complex, class II, DR beta 4; major histocompatibility complex, class II, DR beta 4 precursor; major histocompatibility complex, class II, DR beta 5; major histocompatibility complex, class II, DRB3; MHC cell surface glycoprotein; MHC class I antigen; MHC class II antigen; MHC class II antigen beta chain; MHC class II antigen BoLA-DRB3; MHC class II antigen DR beta 3 chain; MHC class II antigen DRA; MHC class II antigen DRB1*15; MHC class II antigen DRB1*16; MHC class II antigen DRB1*3; MHC class II antigen DRB1*9; MHC class II antigen DRB3; MHC class II antigen DRB4; MHC class II antigen DRB5; MHC class II antigen E alpha; MHC class II antigen HLA-DR-beta; MHC class II DLA DRB1 beta chain; MHC class II DLA-DRB; MHC class II DLA-DR-beta-1; MHC class II DR beta 1; MHC class II DR beta chain; MHC class II DR beta-chain; MHC class II DR-ALPHA
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA