Published Application/Species/Sample/Dilution | Reference |
---|
- immunocytochemistry; human; 1:100; loading ...; fig s2c
| Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko L, et al. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell. 2022;29:1475-1490.e6 pubmed publisher
|
- immunocytochemistry; rhesus macaque; 1:100; fig 2a
| Rodriguez Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep. 2021;11:15439 pubmed publisher
|
- flow cytometry; human; 1:100
| Gkountela S, Li Z, Chin C, Lee S, Clark A. PRMT5 is required for human embryonic stem cell proliferation but not pluripotency. Stem Cell Rev. 2014;10:230-9 pubmed publisher
|
| Hathy E, Szabó E, Vincze K, Haltrich I, Kiss E, Varga N, et al. Generation of multiple iPSC clones from a male schizophrenia patient carrying de novo mutations in genes KHSRP, LRRC7, and KIR2DL1, and his parents. Stem Cell Res. 2021;51:102140 pubmed publisher
|
| Petkov S, Dressel R, Rodriguez Polo I, Behr R. Controlling the Switch from Neurogenesis to Pluripotency during Marmoset Monkey Somatic Cell Reprogramming with Self-Replicating mRNAs and Small Molecules. Cells. 2020;9: pubmed publisher
|
| Matsumura K, Seiriki K, Okada S, Nagase M, Ayabe S, Yamada I, et al. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes. Nat Commun. 2020;11:859 pubmed publisher
|
| Tang C, Zhou D, Tan R, Zhong X, Xiao X, Qin D, et al. Auxiliary genetic analysis in a Chinese adolescent NPH family by single nucleotide polymorphism screening. Mol Med Rep. 2020;21:1115-1124 pubmed publisher
|
| Chumarina M, Russ K, Azevedo C, Heuer A, Pihl M, Collin A, et al. Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathol Commun. 2019;7:208 pubmed publisher
|
| Giesselmann P, Brändl B, Raimondeau E, Bowen R, Rohrandt C, Tandon R, et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat Biotechnol. 2019;37:1478-1481 pubmed publisher
|
| Wilkinson A, Ryan D, Kucinski I, Wang W, Yang J, Nestorowa S, et al. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp Hematol. 2019;76:1-12.e5 pubmed publisher
|
| De Los Angeles A, Sakurai M, Wu J. Embryonic Chimeras with Human Pluripotent Stem Cells. Methods Mol Biol. 2019;2005:125-151 pubmed publisher
|
| Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, et al. Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis. 2018;9:923 pubmed publisher
|
| Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed publisher
|
| Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong W, Rozen S, et al. Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Res Ther. 2018;9:68 pubmed publisher
|
| Kondrashov A, Duc Hoang M, Smith J, Bhagwan J, Duncan G, Mosqueira D, et al. Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Stem Cells Dev. 2018;27:391-404 pubmed publisher
|
| Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed publisher
|
| Sosa E, Kim R, Rojas E, Hosohama L, Hennebold J, Orwig K, et al. An integration-free, virus-free rhesus macaque induced pluripotent stem cell line (riPSC90) from embryonic fibroblasts. Stem Cell Res. 2017;21:5-8 pubmed publisher
|
| Suchorska W, Augustyniak E, Richter M, Trzeciak T. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs). Stem Cell Rev. 2017;13:299-308 pubmed publisher
|
| Debowski K, Drummer C, Lentes J, Cors M, Dressel R, Lingner T, et al. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features. Sci Rep. 2016;6:29122 pubmed publisher
|
| Pei Y, Peng J, Behl M, Sipes N, Shockley K, Rao M, et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res. 2016;1638:57-73 pubmed publisher
|
| Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed publisher
|
| Dianat N, Dubois Pot Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 2014;60:700-14 pubmed publisher
|
| Matsumoto Y, Hayashi Y, Schlieve C, Ikeya M, Kim H, Nguyen T, et al. Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J Rare Dis. 2013;8:190 pubmed publisher
|
| Choi W, Jeon H, Chung Y, Lim J, Shin D, Kim J, et al. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev. 2013;22:2158-73 pubmed publisher
|
| Gkountela S, Li Z, Vincent J, Zhang K, Chen A, Pellegrini M, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol. 2013;15:113-22 pubmed publisher
|
| Chang C, Bouhassira E. Zinc-finger nuclease-mediated correction of ?-thalassemia in iPS cells. Blood. 2012;120:3906-14 pubmed publisher
|
| Cayo M, Cai J, DeLaForest A, Noto F, Nagaoka M, Clark B, et al. JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology. 2012;56:2163-71 pubmed publisher
|
| Eildermann K, Gromoll J, Behr R. Misleading and reliable markers to differentiate between primate testis-derived multipotent stromal cells and spermatogonia in culture. Hum Reprod. 2012;27:1754-67 pubmed publisher
|
| Chang C, Mitra K, Koya M, Velho M, Desprat R, Lenz J, et al. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS ONE. 2011;6:e25761 pubmed publisher
|
| Dick E, Matsa E, Young L, Darling D, Denning C. Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nat Protoc. 2011;6:701-14 pubmed publisher
|
| Miranda Sayago J, Fernández Arcas N, Benito C, Reyes Engel A, Carrera J, Alonso A. Lifespan of human amniotic fluid-derived multipotent mesenchymal stromal cells. Cytotherapy. 2011;13:572-81 pubmed publisher
|
| Macias M, Grande J, Moreno A, Dominguez I, Bornstein R, Flores A. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol. 2010;203:495.e9-495.e23 pubmed publisher
|
| Kamata M, Liang M, Liu S, Nagaoka Y, Chen I. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS ONE. 2010;5:e11834 pubmed publisher
|
| Kamata M, Liu S, Liang M, Nagaoka Y, Chen I. Generation of human induced pluripotent stem cells bearing an anti-HIV transgene by a lentiviral vector carrying an internal murine leukemia virus promoter. Hum Gene Ther. 2010;21:1555-67 pubmed publisher
|
| Lee N, Kim J, Cho W, Lee M, Steiner R, Gompers A, et al. miR-302b maintains "stemness" of human embryonal carcinoma cells by post-transcriptional regulation of Cyclin D2 expression. Biochem Biophys Res Commun. 2008;377:434-440 pubmed publisher
|
| Schopperle W, DeWolf W. The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells. 2007;25:723-30 pubmed
|
| Xu C, Inokuma M, Denham J, Golds K, Kundu P, Gold J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971-4 pubmed
|
| Badcock G, Pigott C, Goepel J, Andrews P. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 1999;59:4715-9 pubmed
|
| Andrews P, Banting G, Damjanov I, Arnaud D, Avner P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984;3:347-61 pubmed
|