product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD223 (LAG-3) Monoclonal Antibody (eBioC9B7W (C9B7W)), eBioscience
catalog :
14-2231-81
quantity :
50 µg
price :
US 91.75
clonality :
monoclonal
host :
rat
conjugate :
nonconjugated
clone name :
eBioC9B7W (C9B7W)
reactivity :
human, mouse
application :
western blot, ELISA, immunoprecipitation, flow cytometry
more info or order :
citations: 37
Published Application/Species/Sample/DilutionReference
  • flow cytometry; mouse; loading ...
Gryzik S, Hoang Y, Lischke T, Mohr E, Venzke M, Kadner I, et al. Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception. elife. 2020;9: pubmed publisher
  • flow cytometry; mouse; loading ...; fig 6s1
Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed publisher
  • flow cytometry; mouse; fig s5a
Wei J, Long L, Zheng W, Dhungana Y, Lim S, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471-476 pubmed publisher
  • flow cytometry; mouse; loading ...; fig 7a
Salerno F, Guislain A, Freen van Heeren J, Nicolet B, Young H, Wolkers M. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8:e1532762 pubmed publisher
  • flow cytometry; mouse; loading ...; fig e4d
Du X, Wen J, Wang Y, Karmaus P, Khatamian A, Tan H, et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature. 2018;558:141-145 pubmed publisher
  • flow cytometry; mouse; fig 3c
Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed publisher
  • flow cytometry; mouse; loading ...; fig 2e
Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed publisher
  • flow cytometry; mouse
Clemente Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S, Fandos C, et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature. 2016;530:434-40 pubmed publisher
  • flow cytometry; mouse
Xin L, Jiang T, Kinder J, Ertelt J, Way S. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice. Aging Cell. 2015;14:1122-6 pubmed publisher
  • flow cytometry; mouse; 1:100; fig s2
Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed publisher
  • western blot; mouse; 1:100; fig 5,6
Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed publisher
  • flow cytometry; mouse; fig s1
Jing W, Gershan J, Weber J, Tlomak D, McOlash L, Sabatos Peyton C, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J Immunother Cancer. 2015;3:2 pubmed publisher
  • flow cytometry; human; fig 3
Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed publisher
Wu B, Qi L, Chiang H, Pan H, Zhang X, Greenbaum A, et al. BRCA1 deficiency in mature CD8+ T lymphocytes impairs antitumor immunity. J Immunother Cancer. 2023;11: pubmed publisher
Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed publisher
Sun Y, Lu D, Yin Y, Song J, Liu Y, Hao W, et al. PTENα functions as an immune suppressor and promotes immune resistance in PTEN-mutant cancer. Nat Commun. 2021;12:5147 pubmed publisher
Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed publisher
Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed publisher
Menendez C, Jinkins J, Carr D. Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency. J Immunol. 2016;197:1262-75 pubmed publisher
Patterson S, Pesenacker A, Wang A, Gillies J, Mojibian M, Morishita K, et al. T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J Clin Invest. 2016;126:1039-51 pubmed publisher
Renkema K, Li G, Wu A, Smithey M, Nikolich Žugich J. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging. J Immunol. 2014;192:151-9 pubmed publisher
Huang H, Dawicki W, Lu M, Nayyar A, Zhang X, Gordon J. Regulatory dendritic cell expression of MHCII and IL-10 are jointly requisite for induction of tolerance in a murine model of OVA-asthma. Allergy. 2013;68:1126-35 pubmed publisher
Huang H, Ma Y, Dawicki W, Zhang X, Gordon J. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. J Immunol. 2013;191:1136-43 pubmed publisher
Hu Z, Zhang W, Usherwood E. Regulatory CD8+ T cells associated with erosion of immune surveillance in persistent virus infection suppress in vitro and have a reversible proliferative defect. J Immunol. 2013;191:312-22 pubmed publisher
Cook K, Whitmire J. The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol. 2013;190:641-9 pubmed publisher
Tewalt E, Cohen J, Rouhani S, Guidi C, Qiao H, Fahl S, et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 2012;120:4772-82 pubmed publisher
Brentville V, Metheringham R, Gunn B, Durrant L. High avidity cytotoxic T lymphocytes can be selected into the memory pool but they are exquisitely sensitive to functional impairment. PLoS ONE. 2012;7:e41112 pubmed publisher
Bak S, Barnkob M, Bai A, Higham E, Wittrup K, Chen J. Differential requirement for CD70 and CD80/CD86 in dendritic cell-mediated activation of tumor-tolerized CD8 T cells. J Immunol. 2012;189:1708-16 pubmed publisher
Wilson J, Pack C, Lin E, Frost E, Albrecht J, Hadley A, et al. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. J Immunol. 2012;188:4340-8 pubmed publisher
Lee L, Baban D, Ronan E, Ragoussis J, Beverley P, Tchilian E. Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A. BMC Med Genomics. 2010;3:46 pubmed publisher
Van Deusen K, Rajapakse R, Bullock T. CD70 expression by dendritic cells plays a critical role in the immunogenicity of CD40-independent, CD4+ T cell-dependent, licensed CD8+ T cell responses. J Leukoc Biol. 2010;87:477-85 pubmed publisher
Lin Y, Chang L, Huang C, Peng H, Dutta A, Chen T, et al. Effector/memory but not naive regulatory T cells are responsible for the loss of concomitant tumor immunity. J Immunol. 2009;182:6095-104 pubmed publisher
Deepe G, Gibbons R. TNF-alpha antagonism generates a population of antigen-specific CD4+CD25+ T cells that inhibit protective immunity in murine histoplasmosis. J Immunol. 2008;180:1088-97 pubmed
Pallandre J, Brillard E, Crehange G, Radlovic A, Remy Martin J, Saas P, et al. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol. 2007;179:7593-604 pubmed
Workman C, Vignali D. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol. 2005;174:688-95 pubmed
Li N, Workman C, Martin S, Vignali D. Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J Immunol. 2004;173:6806-12 pubmed
Huang C, Workman C, Flies D, Pan X, Marson A, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503-13 pubmed
product information
Product Type :
Antibody
Product Name :
CD223 (LAG-3) Monoclonal Antibody (eBioC9B7W (C9B7W)), eBioscience
Catalog # :
14-2231-81
Quantity :
50 µg
Price :
US 91.75
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Rat
Reactivity :
Mouse
Applications :
ELISA: 2 µg/mL, Flow Cytometry: 0.5 µg/test, Functional Assay: Assay-Dependent, Immunoprecipitation: Assay-Dependent
Species :
Mouse
Clone :
eBioC9B7W (C9B7W)
Isotype :
IgG1, kappa
Storage :
4° C
Description :
LAG-3 is a 70-kDa surface glycoprotein belonging to the Ig superfamily with homology to CD4. LAG-3 binds to MHC class II with higher affinity than CD4 and is thought to be involved in the negative regulation of T cell activation and homeostatic proliferation. Surface expression of LAG-3 has been reported on activated T cells (including regulatory T cells) and NK cells. CD8+ T cells usually express LAG-3 at significantly higher levels than CD4+ T cells. Coexpression of LAG-3 and CD49b has been proposed to identify human and mouse Type 1 regulatory T cells (Tr1 cells).
Format :
Liquid
Applications w/Dilutions :
ELISA: 2 µg/mL, Flow Cytometry: 0.5 µg/test, Functional Assay: Assay-Dependent, Immunoprecipitation: Assay-Dependent
Aliases :
Activation-induced cytidine deaminase-linked autoimmunity protein; Aida; CD223; FDC; LAG3; LAG-3; Ly66; lymphocyte activating 3; lymphocyte activation gene 3 protein; lymphocyte-activation gene 3; Secreted lymphocyte activation gene 3 protein; sLAG 3; sLAG3; sLAG-3; soluble LAG 3lymphocyte activating 3; soluble LAG3
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA