This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD144 (VE-cadherin) Monoclonal Antibody (16B1), eBioscience
catalog :
14-1449-37
quantity :
2 mg
price :
US 1482.00
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
16B1
reactivity :
human
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry
citations: 40
Reference
Gaikwad A, Lu W, Dey S, Bhattarai P, Haug G, Larby J, et al. Endothelial-to-mesenchymal transition: a precursor to pulmonary arterial remodelling in patients with idiopathic pulmonary fibrosis. ERJ Open Res. 2023;9: pubmed publisher
Meng W, Guo S, Cao S, Shuda M, Robinson McCarthy L, McCarthy K, et al. Development and characterization of a new monoclonal antibody against SARS-CoV-2 NSP12 (RdRp). J Med Virol. 2022;: pubmed publisher
Zhang K, Du Z, Yuan T, Huang J, Zhao X, Mi S. Long-term cultured microvascular networks on chip for tumor vascularization research and drug testing. Biomicrofluidics. 2022;16:044101 pubmed publisher
Gaikwad A, Lu W, Dey S, Bhattarai P, Chia C, Larby J, et al. Vascular remodelling in idiopathic pulmonary fibrosis patients and its detrimental effect on lung physiology: potential role of endothelial-to-mesenchymal transition. ERJ Open Res. 2022;8: pubmed publisher
Zhang X, Abutaleb N, Salmon E, Truskey G. In Situ Fabrication and Perfusion of Tissue-Engineered Blood Vessel Microphysiological System. Methods Mol Biol. 2022;2375:77-90 pubmed publisher
Fikatas A, Dehairs J, Noppen S, Doijen J, Vanderhoydonc F, Meyen E, et al. Deciphering the Role of Extracellular Vesicles Derived from ZIKV-Infected hcMEC/D3 Cells on the Blood-Brain Barrier System. Viruses. 2021;13: pubmed publisher
Kataru R, Baik J, Park H, Ly C, Shin J, Schwartz N, et al. Lymphatic-specific intracellular modulation of receptor tyrosine kinase signaling improves lymphatic growth and function. Sci Signal. 2021;14: pubmed publisher
Li J, Zhu Y, Li N, Wu T, Zheng X, Heng B, et al. Upregulation of ETV2 Expression Promotes Endothelial Differentiation of Human Dental Pulp Stem Cells. Cell Transplant. 2021;30:963689720978739 pubmed publisher
van IJzendoorn D, Salvatori D, Cao X, van den Hil F, Briaire de Bruijn I, de Jong D, et al. Vascular Tumor Recapitulated in Endothelial Cells from hiPSCs Engineered to Express the SERPINE1-FOSB Translocation. Cell Rep Med. 2020;1:100153 pubmed publisher
Liu H, Qiu Y, Pei X, Chitteti R, Steiner R, Zhang S, et al. Endothelial specific YY1 deletion restricts tumor angiogenesis and tumor growth. Sci Rep. 2020;10:20493 pubmed publisher
Yang C, Eleftheriadou M, Kelaini S, Morrison T, González M, Caines R, et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun. 2020;11:3812 pubmed publisher
Filippo Buono M, von Boehmer L, Strang J, Hoerstrup S, Emmert M, Nugraha B. Human Cardiac Organoids for Modeling Genetic Cardiomyopathy. Cells. 2020;9: pubmed publisher
Kuczmarski A, Shoemaker L, Hobson J, Edwards D, Wenner M. Altered endothelial ETB receptor expression in postmenopausal women. Am J Physiol Heart Circ Physiol. 2020;319:H242-H247 pubmed publisher
Wertheim B, Lin Y, Zhang Y, Samokhin A, Alba G, Arons E, et al. Isolating pulmonary microvascular endothelial cells ex vivo: Implications for pulmonary arterial hypertension, and a caution on the use of commercial biomaterials. PLoS ONE. 2019;14:e0211909 pubmed publisher
Lee S, Sohn Y, Andukuri A, Kim S, Byun J, Han J, et al. Enhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell-Derived Endothelial Cells Encapsulated in a Nanomatrix Gel. Circulation. 2017;136:1939-1954 pubmed publisher
Li Y, Brauer P, Singh J, Xhiku S, Yoganathan K, Zuniga Pflucker J, et al. Targeted Disruption of TCF12 Reveals HEB as Essential in Human Mesodermal Specification and Hematopoiesis. Stem Cell Reports. 2017;9:779-795 pubmed publisher
Rezaie J, Mehranjani M, Rahbarghazi R, Shariatzadeh M. Angiogenic and Restorative Abilities of Human Mesenchymal Stem Cells Were Reduced Following Treatment With Serum From Diabetes Mellitus Type 2 Patients. J Cell Biochem. 2018;119:524-535 pubmed publisher
Almalki S, Agrawal D. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Ther. 2017;8:113 pubmed publisher
Castle J, Morris K, Pritchard S, Kirwan C. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS ONE. 2017;12:e0175647 pubmed publisher
Almalki S, Llamas Valle Y, Agrawal D. MMP-2 and MMP-14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose-Derived Mesenchymal Stem Cells to Endothelial Cells. Stem Cells Transl Med. 2017;6:1385-1398 pubmed publisher
Galkin I, Pletjushkina O, Zinovkin R, Zakharova V, Chernyak B, Popova E. Mitochondria-Targeted Antioxidant SkQR1 Reduces TNF-Induced Endothelial Permeability in vitro. Biochemistry (Mosc). 2016;81:1188-1197 pubmed
Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed publisher
Williamson S, Metcalf R, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322 pubmed publisher
Morrow C, Trapani F, Metcalf R, Bertolini G, Hodgkinson C, Khandelwal G, et al. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol. 2016;27:1155-60 pubmed publisher
Yan Z, Wang Z, Segev N, Hu S, Minshall R, Dull R, et al. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function. Arterioscler Thromb Vasc Biol. 2016;36:339-49 pubmed publisher
Cai J, Orlova V, Cai X, Eekhoff E, Zhang K, Pei D, et al. Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva. Stem Cell Reports. 2015;5:963-970 pubmed publisher
Ginsberg M, Schachterle W, Shido K, Rafii S. Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nat Protoc. 2015;10:1975-85 pubmed publisher
Bai H, Liu Y, Xie Y, Hoyle D, Brodsky R, Cheng L, et al. Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. J Cell Physiol. 2016;231:1065-76 pubmed publisher
Wu L, Wary K, REVSKOY S, Gao X, Tsang K, Komarova Y, et al. Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports. 2015;5:10-21 pubmed publisher
Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui Tei K, Takeshita T, et al. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med. 2015;35:1273-89 pubmed publisher
Mendez J, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji C, et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials. 2015;40:61-71 pubmed publisher
Pinho S, LaCombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFR? and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210:1351-67 pubmed publisher
Goretti E, Rolland Turner M, Léonard F, Zhang L, Wagner D, Devaux Y. MicroRNA-16 affects key functions of human endothelial progenitor cells. J Leukoc Biol. 2013;93:645-55 pubmed publisher
Ginsberg M, James D, Ding B, Nolan D, Geng F, Butler J, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGF? suppression. Cell. 2012;151:559-75 pubmed publisher
Choi K, Vodyanik M, Togarrati P, Suknuntha K, Kumar A, Samarjeet F, et al. Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2012;2:553-67 pubmed publisher
Iriuchishima H, Takubo K, Miyakawa Y, Nakamura Ishizu A, Miyauchi Y, Fujita N, et al. Neovascular niche for human myeloma cells in immunodeficient mouse bone. PLoS ONE. 2012;7:e30557 pubmed publisher
Manes T, Pober J. Identification of endothelial cell junctional proteins and lymphocyte receptors involved in transendothelial migration of human effector memory CD4+ T cells. J Immunol. 2011;186:1763-8 pubmed publisher
Schugar R, Chirieleison S, Wescoe K, Schmidt B, Askew Y, Nance J, et al. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol. 2009;2009:789526 pubmed publisher
Horn A, Eberhorn A, Hartig W, Ardeleanu P, Messoudi A, Büttner Ennever J. Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol. 2008;507:1317-35 pubmed publisher
Rajesh D, Chinnasamy N, Mitalipov S, Wolf D, Slukvin I, Thomson J, et al. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells. Stem Cells. 2007;25:490-9 pubmed
product information
Product Type :
Antibody
Product Name :
CD144 (VE-cadherin) Monoclonal Antibody (16B1), eBioscience
Catalog # :
14-1449-37
Quantity :
2 mg
Price :
US 1482.00
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Mouse
Reactivity :
Human
Applications :
Flow Cytometry: Assay-Dependent, Immunocytochemistry: 5 ug/mL, Immunohistochemistry: Assay-Dependent, Western Blot: Assay-Dependent
Species :
Human
Clone :
16B1
Isotype :
IgG1
Storage :
4 C
Description :
VE-cadherin is a member of the cadherin superfamily that is located in a six-cadherin cluster in a region on the long arm of chromosome 16 and is involved in loss of heterozygosity events in breast and prostate cancer. VE-cadherin protein is a calcium-dependent cell-cell adhesion glycoprotein comprised of five extracellular cadherin repeats, a transmembrane region and a highly conserved cytoplasmic tail. Functioning as a classic cadherin by imparting to cells the ability to adhere in a homophilic manner, VE-cadherin may play an important role in endothelial cell biology through control of the cohesion and organization of the intercellular junctions. An alternative splice variant has been described but the full length sequence of VE-cadherin has not been determined.
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: Assay-Dependent, Immunocytochemistry: 5 ug/mL, Immunohistochemistry: Assay-Dependent, Western Blot: Assay-Dependent
Aliases :
7B4; 7B4 antigen; 7B4/cadherin-5; AA408225; cadherin 5; cadherin 5, type 2 (vascular endothelium); cadherin 5, type 2, VE-cadherin (vascular endothelium); cadherin 5, type 2, VE-cadherin (vascular epithelium); cadherin-5; cadherin-5; cd144 antigen; VE cadherin; Cd144; cd144 antigen; CDH5; cell-cell adhesion protein; endothelial-specific cadherin; vascular endothelial cadherin; vascular endothelial cadherin precursor; Vec; VEcad; VE-Cad; VE-cadherin; VECD
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA