product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
NEFM Monoclonal Antibody (RMO-270)
catalog :
13-0700
quantity :
200 µg
price :
425 USD
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
RMO-270
reactivity :
human, mouse, rat, chicken, zebrafish , Xenopus laevis
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
more info or order :
citations: 52
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; mouse; 1:1000; loading ...; tbl 1
Pasquini J, Barrantes F, Quintá H. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol. 2017;525:2861-2875 pubmed publisher
  • immunohistochemistry; chicken; 1:1000; fig 1f
Faunes M, Botelho J, Wild J. Innervation of the syrinx of the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:2847-2860 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:1.500; loading ...; fig s6u
Himmels P, Paredes I, Adler H, Karakatsani A, Luck R, Marti H, et al. Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun. 2017;8:14583 pubmed publisher
  • immunohistochemistry - paraffin section; chicken; 1:1000; loading ...; fig 5c
Ware M, Hamdi Rozé H, Le Friec J, David V, Dupé V. Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain. Neural Dev. 2016;11:22 pubmed
  • immunohistochemistry; Xenopus laevis; 1:500; loading ...; fig 1c
Gambrill A, Faulkner R, Cline H. Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles. J Neurophysiol. 2016;116:2281-2297 pubmed publisher
  • flow cytometry; chicken; 1:5000; fig 1
  • immunohistochemistry; chicken; 1:5000; fig s1
Patthey C, Clifford H, Haerty W, Ponting C, Shimeld S, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev. 2016;11:3 pubmed publisher
  • immunohistochemistry; chicken; 1:5000
Smith A, Fleenor S, Begbie J. Changes in gene expression and cell shape characterise stages of epibranchial placode-derived neuron maturation in the chick. J Anat. 2015;227:89-102 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:250; fig 4j-l, m-o
Gay M, Valenta T, Herr P, Paratore Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol. 2015;13:24 pubmed publisher
  • immunocytochemistry; rat
Jung Y, Ng J, Keating C, Senthil Kumar P, Zhao J, Randolph M, et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS ONE. 2014;9:e94054 pubmed publisher
  • immunohistochemistry; chicken
Lours Calet C, Alvares L, El Hanfy A, Gandesha S, Walters E, Sobreira D, et al. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures. Dev Biol. 2014;390:231-46 pubmed publisher
  • immunohistochemistry; chicken; 1:200
Ma Z, Wang G, Cheng X, Chuai M, Kurihara H, Lee K, et al. Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med. 2014;18:1134-43 pubmed publisher
  • immunohistochemistry; chicken; 1:5000; fig 1
Freter S, Fleenor S, Freter R, Liu K, Begbie J. Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development. 2013;140:3595-600 pubmed publisher
  • immunohistochemistry; mouse; 1:1000; fig 7
Yoo M, Khaled M, Gibbs K, Kim J, Kowalewski B, Dierks T, et al. Arylsulfatase B improves locomotor function after mouse spinal cord injury. PLoS ONE. 2013;8:e57415 pubmed publisher
  • immunohistochemistry - frozen section; chicken; 1:50
Sanyas I, Bozon M, Moret F, Castellani V. Motoneuronal Sema3C is essential for setting stereotyped motor tract positioning in limb-derived chemotropic semaphorins. Development. 2012;139:3633-43 pubmed publisher
  • immunohistochemistry; mouse; 1:3000; fig 2
Simrick S, Lickert H, Basson M. Sprouty genes are essential for the normal development of epibranchial ganglia in the mouse embryo. Dev Biol. 2011;358:147-55 pubmed publisher
  • immunocytochemistry; mouse; 1:1500; fig 7
Niederkofler V, Baeriswyl T, Ott R, Stoeckli E. Nectin-like molecules/SynCAMs are required for post-crossing commissural axon guidance. Development. 2010;137:427-35 pubmed publisher
  • immunohistochemistry; human; 5 ug/ml; fig 3
Arthur A, Shi S, Zannettino A, Fujii N, Gronthos S, Koblar S. Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells. 2009;27:2229-37 pubmed publisher
  • immunocytochemistry; human; 1:100; fig 3
Colakoglu G, Brown A. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. J Cell Biol. 2009;185:769-77 pubmed publisher
  • immunohistochemistry; chicken; 1:100; fig 3B
Moret F, Renaudot C, Bozon M, Castellani V. Semaphorin and neuropilin co-expression in motoneurons sets axon sensitivity to environmental semaphorin sources during motor axon pathfinding. Development. 2007;134:4491-501 pubmed
  • immunohistochemistry - paraffin section; chicken; 1:10,000
Graham A, Blentic A, Duque S, Begbie J. Delamination of cells from neurogenic placodes does not involve an epithelial-to-mesenchymal transition. Development. 2007;134:4141-5 pubmed
  • immunohistochemistry; mouse; fig 2
  • immunohistochemistry; chicken; fig 2
Borday C, Coutinho A, Germon I, Champagnat J, Fortin G. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo. J Neurobiol. 2006;66:1285-301 pubmed
  • immunohistochemistry - paraffin section; chicken; 1:10,000
Ferguson C, Graham A. Redefining the head-trunk interface for the neural crest. Dev Biol. 2004;269:70-80 pubmed
  • immunohistochemistry; mouse
Polo Parada L, Bose C, Plattner F, Landmesser L. Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci. 2004;24:1852-64 pubmed
  • immunohistochemistry; zebrafish ; 1:10000
Walshe J, Mason I. Fgf signalling is required for formation of cartilage in the head. Dev Biol. 2003;264:522-36 pubmed
  • western blot; mouse; 1:1000; fig 1
Dashiell S, Tanner S, Pant H, Quarles R. Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem. 2002;81:1263-72 pubmed
  • immunohistochemistry; chicken; 1:500; fig 1
Golding J, Dixon M, Gassmann M. Cues from neuroepithelium and surface ectoderm maintain neural crest-free regions within cranial mesenchyme of the developing chick. Development. 2002;129:1095-105 pubmed
  • immunohistochemistry; chicken
Mootoosamy R, Dietrich S. Distinct regulatory cascades for head and trunk myogenesis. Development. 2002;129:573-83 pubmed
  • immunohistochemistry; chicken; 1:500; fig 2
Britto J, Tannahill D, Keynes R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat Neurosci. 2002;5:103-10 pubmed
  • immunohistochemistry; chicken; 1:10000; fig 1
Hunter E, Begbie J, Mason I, Graham A. Early development of the mesencephalic trigeminal nucleus. Dev Dyn. 2001;222:484-93 pubmed
  • immunohistochemistry - paraffin section; chicken; fig 5
Hashino E, Johnson E, Milbrandt J, Shero M, Salvi R, Cohan C. Multiple actions of neurturin correlate with spatiotemporal patterns of Ret expression in developing chick cranial ganglion neurons. J Neurosci. 1999;19:8476-86 pubmed
  • immunohistochemistry; chicken
Jungbluth S, Bell E, Lumsden A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development. 1999;126:2751-8 pubmed
  • immunohistochemistry; chicken; 1:10000
MacKenzie S, Walsh F, Graham A. Migration of hypoglossal myoblast precursors. Dev Dyn. 1998;213:349-58 pubmed
  • immunohistochemistry; chicken; 1:2000
Logan C, Wingate R, McKay I, Lumsden A. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity. J Neurosci. 1998;18:5389-402 pubmed
  • western blot; rat
Veeranna -, Amin N, Ahn N, Jaffe H, Winters C, Grant P, et al. Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci. 1998;18:4008-21 pubmed
  • immunohistochemistry; Xenopus laevis; fig 2
Blanco R, Orkand P. Astrocytes and regenerating axons at the proximal stump of the severed frog optic nerve. Cell Tissue Res. 1996;286:337-45 pubmed
Si Z, Wang G, Han S, Jin Y, Hu Y, He M, et al. CNTF and Nrf2 Are Coordinately Involved in Regulating Self-Renewal and Differentiation of Neural Stem Cell during Embryonic Development. iScience. 2019;19:303-315 pubmed publisher
Manogaran P, Samardzija M, Schad A, Wicki C, Walker Egger C, Rudin M, et al. Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis. Acta Neuropathol Commun. 2019;7:116 pubmed publisher
Walker C, Uchida A, Li Y, Trivedi N, Fenn J, Monsma P, et al. Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci. 2019;39:663-677 pubmed publisher
Tymanskyj S, Yang B, Verhey K, Ma L. MAP7 regulates axon morphogenesis by recruiting kinesin-1 to microtubules and modulating organelle transport. elife. 2018;7: pubmed publisher
Ito N, Katoh K, Kushige H, Saito Y, Umemoto T, Matsuzaki Y, et al. Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Sci Rep. 2018;8:1634 pubmed publisher
Nogueira J, Hawrot K, Sharpe C, Noble A, Wood W, Jorge E, et al. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. Front Aging Neurosci. 2015;7:62 pubmed publisher
SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed publisher
Westenskow P, McKean J, Kubo F, Nakagawa S, Fuhrmann S. Ectopic Mitf in the embryonic chick retina by co-transfection of ?-catenin and Otx2. Invest Ophthalmol Vis Sci. 2010;51:5328-35 pubmed publisher
Arthur A, Rychkov G, Shi S, Koblar S, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008;26:1787-95 pubmed publisher
Stepanek L, Stoker A, Stoeckli E, Bixby J. Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci. 2005;25:3813-23 pubmed
Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development. 2003;130:587-98 pubmed
Webber C, Hocking J, Yong V, Stange C, McFarlane S. Metalloproteases and guidance of retinal axons in the developing visual system. J Neurosci. 2002;22:8091-100 pubmed
Kim O, Ariano M, Lazzarini R, Levine M, Sibley D. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci. 2002;22:5920-30 pubmed
Fischer A, Dierks B, Reh T. Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development. 2002;129:2283-91 pubmed
Charter N, Mahal L, Koshland D, Bertozzi C. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J Biol Chem. 2002;277:9255-61 pubmed
Larsen C, Zeltser L, Lumsden A. Boundary formation and compartition in the avian diencephalon. J Neurosci. 2001;21:4699-711 pubmed
Bell E, Wingate R, Lumsden A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science. 1999;284:2168-71 pubmed
product information
Product Type :
Antibody
Product Name :
NEFM Monoclonal Antibody (RMO-270)
Catalog # :
13-0700
Quantity :
200 µg
Price :
425 USD
Clonality :
Monoclonal
Purity :
protein A
Host :
Mouse
Reactivity :
Human, Mouse, Rat
Applications :
ELISA: 0.1-0.5 µg/mL, Immunocytochemistry: 5 µg/mL, Immunofluorescence: Assay Dependent, Immunohistochemistry (Paraffin): Assay Dependent, Immunohistochemistry: 5-10 µg/mL, Immunoprecipitation: 2-5 µg, Western Blot: 0.5-1 µg/mL
Species :
Human, Mouse, Rat
Clone :
RMO-270
Isotype :
IgG2a, kappa
Storage :
-20°C
Description :
Neurofilaments (NFs) are a type of intermediate filament (IF) expressed almost exclusively in neuronal cells, and in those cells most prominently in large axons. NFs, in most vertebrates, are composed of three different polypeptide chains with different molecular weights - neurofilament medium protein (NF-M), high (NF-H) and light protein (NF-L), which share sequence and structural similarity in a coiled-coil core domain, but differ in the length and sequence of their N-termini and more dramatically of their C-termini which in the case of NF-M and NF-H form the flexible extensions that link NFs to each other and to other elements in the cytoplasm. NF-M protein tail-mediated interactions of neurofilaments are critical for size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of this protein. NF-M phosphorylation and O-GlcNAcylation are regulated reciprocally and affect its translocation and filament formation and function. Antibodies to the various neurofilament subunits are very useful cell type markers since the proteins are among the most abundant of the nervous system, are expressed only in neurons and are biochemically very stable.
Immunogen :
Rat neurofilaments
Format :
Liquid
Applications w/Dilutions :
ELISA: 0.1-0.5 µg/mL, Immunocytochemistry: 5 µg/mL, Immunofluorescence: Assay Dependent, Immunohistochemistry (Paraffin): Assay Dependent, Immunohistochemistry: 5-10 µg/mL, Immunoprecipitation: 2-5 µg, Western Blot: 0.5-1 µg/mL
Aliases :
160 kDa neurofilament protein; major neuronal intermediate filament subunit; middle molecular weight neurofilament protein NF-M(2); nef3; NEFM; nef-m; nefm.S; nefm-a; nefm-b; neurofilament 3; neurofilament 3 (150kDa medium); neurofilament 3, medium; neurofilament M subunit; neurofilament medium; neurofilament medium polypeptide; neurofilament medium S homeolog; neurofilament medium tail domain; neurofilament protein M; Neurofilament protein, middle polypeptide; neurofilament triplet M protein; neurofilament, medium polypeptide; neurofilament, medium polypeptide 150kDa; neurofilament, medium polypeptide S homeolog; neurofilament-3 (150 kD medium); neurofilament-M; neurofilament-M subunit; neuronal intermediate filament; NF160; NF165; NFM; NF-M; NF-M c-terminus; NF-M protein; NMC; XELAEV_18020229mg
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA