product summary
Loading...
company name :
Invitrogen
other brands :
NeoMarkers, Lab Vision, Endogen, Pierce, BioSource International, Zymed Laboratories, Caltag, Molecular Probes, Research Genetics, Life Technologies, Applied Biosystems, GIBCO BRL, ABgene, Dynal, Affinity BioReagents, Nunc, Invitrogen, NatuTec, Oxoid, Richard-Allan Scientific, Arcturus, Perseptive Biosystems, Proxeon, eBioscience
product type :
antibody
product name :
CD163 Monoclonal Antibody (eBioGHI/61 (GHI/61)), PE, eBioscience™
catalog :
12-1639-42
quantity :
100 Tests
price :
US 291
clonality :
monoclonal
host :
mouse
conjugate :
PE
clone name :
eBioGHI/61 (GHI/61)
reactivity :
human, mouse
application :
flow cytometry
more info or order :
citations: 36
Published Application/Species/Sample/DilutionReference
  • flow cytometry; mouse; loading ...; fig 6e
Zhao Y, Sun J, Li Y, Zhou X, Zhai W, Wu Y, et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharm Sin B. 2021;11:2835-2849 pubmed publisher
  • flow cytometry; human; fig 6a
Garcia Mesa Y, Jay T, Checkley M, Luttge B, Dobrowolski C, Valadkhan S, et al. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol. 2017;23:47-66 pubmed publisher
  • flow cytometry; human
O Regan N, Steinfelder S, Venugopal G, Rao G, Lucius R, Srikantam A, et al. Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses. PLoS Negl Trop Dis. 2014;8:e3206 pubmed publisher
Huang X, Pang M, Li J, Chen H, Sun J, Song Y, et al. Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis. Nat Commun. 2023;14:822 pubmed publisher
Fang J, Ou Q, Wu B, Li S, Wu M, Qiu J, et al. TcpC Inhibits M1 but Promotes M2 Macrophage Polarization via Regulation of the MAPK/NF-κB and Akt/STAT6 Pathways in Urinary Tract Infection. Cells. 2022;11: pubmed publisher
Zhao G, Ding L, Yu H, Wang W, Wang H, Hu Y, et al. M2-like tumor-associated macrophages transmit exosomal miR-27b-3p and maintain glioblastoma stem-like cell properties. Cell Death Discov. 2022;8:350 pubmed publisher
Yan X, He Y, Yang S, Zeng T, Hua Y, Bao S, et al. A positive feedback loop: RAD18-YAP-TGF-β between triple-negative breast cancer and macrophages regulates cancer stemness and progression. Cell Death Discov. 2022;8:196 pubmed publisher
Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K, et al. M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 2022;13:183 pubmed publisher
Janosz E, Hetzel M, Spielmann H, Tumpara S, Rossdam C, Schwabbauer M, et al. Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Ther. 2021;28:477-493 pubmed publisher
Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis. 2020;11:234 pubmed publisher
Taleska Stupica G, Sostaric M, Bozhinovska M, Rupert L, Bosnić Z, Jerin A, et al. Extracorporeal Hemadsorption versus Glucocorticoids during Cardiopulmonary Bypass: A Prospective, Randomized, Controlled Trial. Cardiovasc Ther. 2020;2020:7834173 pubmed publisher
Schmitz T, Jannasch M, Weigel T, Moseke C, Gbureck U, Groll J, et al. Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages. Materials (Basel). 2020;13: pubmed publisher
Haake K, Neehus A, Buchegger T, Kühnel M, Blank P, Philipp F, et al. Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway. Cells. 2020;9: pubmed publisher
Wilcz Villega E, Carter E, Ironside A, Xu R, Mataloni I, Holdsworth J, et al. Macrophages induce malignant traits in mammary epithelium via IKKε/TBK1 kinases and the serine biosynthesis pathway. EMBO Mol Med. 2020;12:e10491 pubmed publisher
Wang S, Liu X, Huang R, Zheng Y, Wang N, Yang B, et al. XIAOPI Formula Inhibits Breast Cancer Stem Cells via Suppressing Tumor-Associated Macrophages/C-X-C Motif Chemokine Ligand 1 Pathway. Front Pharmacol. 2019;10:1371 pubmed publisher
Shi S, Lee E, Lin Y, Chen L, Zheng H, He X, et al. Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res. 2019;9:2194-2208 pubmed
Barruet E, Morales B, Cain C, Ton A, Wentworth K, Chan T, et al. NF-κB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight. 2018;3: pubmed publisher
Lan J, Sun L, Xu F, Liu L, Hu F, Song D, et al. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res. 2019;79:146-158 pubmed publisher
Zhao X, Tang X, Guo N, An Y, Chen X, Shi C, et al. Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULK1/mTOR-Mediated Autophagy and Extracellular Traps and Reversing SPI-1-Dependent Macrophage (MΦ) M2 Polarization. Front Cell Infect Microbiol. 2018;8:318 pubmed publisher
Unger A, Finkernagel F, Hoffmann N, Neuhaus F, Joos B, Nist A, et al. Chromatin Binding of c-REL and p65 Is Not Limiting for Macrophage IL12B Transcription During Immediate Suppression by Ovarian Carcinoma Ascites. Front Immunol. 2018;9:1425 pubmed publisher
Hough K, Trevor J, Strenkowski J, Wang Y, Chacko B, Tousif S, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 2018;18:54-64 pubmed publisher
Wu H, Xu X, Li J, Gong J, Li M. TIM‑4 blockade of KCs combined with exogenous TGF‑β injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts. Int J Mol Med. 2018;42:346-358 pubmed publisher
Keuper M, Sachs S, Walheim E, Berti L, Raedle B, Tews D, et al. Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. Mol Metab. 2017;6:1226-1239 pubmed publisher
Jannasch M, Gaetzner S, Weigel T, Walles H, Schmitz T, Hansmann J. A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial. Sci Rep. 2017;7:1689 pubmed publisher
Zhu Z, Ding J, Ma Z, Iwashina T, Tredget E. Alternatively activated macrophages derived from THP-1 cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen. 2017;25:377-388 pubmed publisher
Jannasch M, Weigel T, Engelhardt L, Wiezoreck J, Gaetzner S, Walles H, et al. In vitro chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction. ALTEX. 2017;34:253-266 pubmed publisher
Mladenov R, Hristodorov D, Cremer C, Gresch G, Grieger E, Schenke L, et al. CD64-directed microtubule associated protein tau kills leukemic blasts ex vivo. Oncotarget. 2016;7:67166-67174 pubmed publisher
Je S, Quan H, Na Y, Cho S, Kim B, Seok S. An in vitro model of granuloma-like cell aggregates substantiates early host immune responses against Mycobacterium massiliense infection. Biol Open. 2016;5:1118-27 pubmed publisher
Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36: pubmed publisher
Reinartz S, Finkernagel F, Adhikary T, Rohnalter V, Schumann T, Schober Y, et al. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome. Genome Biol. 2016;17:108 pubmed publisher
Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter. 2012;2:226-36 pubmed publisher
Mesman A, de Vries R, McQuaid S, Duprex W, De Swart R, Geijtenbeek T. A prominent role for DC-SIGN+ dendritic cells in initiation and dissemination of measles virus infection in non-human primates. PLoS ONE. 2012;7:e49573 pubmed publisher
Li W, Katz B, Spinola S. Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages. Infect Immun. 2012;80:4426-34 pubmed publisher
Stolfi C, Caruso R, Franzè E, Sarra M, De Nitto D, Rizzo A, et al. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology. 2011;132:66-77 pubmed publisher
Law S, Micklem K, Shaw J, Zhang X, Dong Y, Willis A, et al. A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur J Immunol. 1993;23:2320-5 pubmed
Pulford K, Micklem K, McCarthy S, Cordell J, Jones M, Mason D. A monocyte/macrophage antigen recognized by the four antibodies GHI/61, Ber-MAC3, Ki-M8 and SM4. Immunology. 1992;75:588-95 pubmed
product information
Product Type :
Antibody
Product Name :
CD163 Monoclonal Antibody (eBioGHI/61 (GHI/61)), PE, eBioscience™
Catalog # :
12-1639-42
Quantity :
100 Tests
Price :
US 291
Clonality :
Monoclonal
Purity :
Affinity chromatography
Host :
Mouse
Reactivity :
Human
Applications :
Flow Cytometry: 5 µL (0.25 µg)/test
Species :
Human
Clone :
eBioGHI/61 (GHI/61)
Isotype :
IgG1, kappa
Storage :
4° C, store in dark, DO NOT FREEZE!
Description :
CD163 (M130 antigen, Ber-Mac3, Ki-M8, SM4) is a 130 kDa membrane glycoprotein, a member of the scavenger receptor cysteine-rich superfamily, and a receptor for the hemoglobin-haptoglobin complex. CD163 protects tissues from free hemoglobin-mediated oxidative damage, and may play a role in the uptake and recycling of iron, via endocytosis of hemoglobin/haptoglobin and subsequent breakdown of heme. CD163 is expressed exclusively on the cell surface of human monocytes and macrophages that evolve predominantly in the late phase of inflammation. Specifically, CD163 is present on all circulating monocytes and most tissue macrophages except those found in the mantle zone and germinal centers of lymphoid follicles, interdigitating reticulum cells and Langerhan's cells. CD163 is present on all CD14 positive monocytes, most CD64 positive monocytes, and shows higher expression on CD16 positive monocytes. CD163 is upregulated on mononuclear phagocytes by IL-10, IL-6 and dexamethasone. Lipopolysaccharide (LPS) and phorbol myristate acetate (PMA) both induce shedding of CD163 from the cell surface into plasma or cell supernatant. CD163 binds hemoglobin/haptoglobin complexes in a calcium-dependent and pH-dependent manner, and exhibits a higher affinity for complexes of hemoglobin and multimeric haptoglobin of HP1F phenotype than for complexes of hemoglobin and dimeric haptoglobin of HP1S phenotype. Further, CD163 also induces a cascade of intracellular signals that involves tyrosine kinase-dependent calcium mobilization, inositol triphosphate production and secretion of IL6 and CSF1.
Format :
Liquid
Applications w/Dilutions :
Flow Cytometry: 5 µL (0.25 µg)/test
Aliases :
Cd163; CD163 antigen; CD163 molecule; CD163v2; CD163v3; hemoglobin scavenger receptor; M130; macrophage-associated antigen; MM130; putative CD163 antigen; SCARI1; Scavenger receptor cysteine-rich type 1 protein M130; sCD163; Soluble CD163; Soluble sCD163
more info or order :
company information
Invitrogen
Thermo Fisher Scientific
81 Wyman Street
Waltham, MA USA 02451
https://www.thermofisher.com
800-678-5599
headquarters: USA