This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
EMD Millipore
other brands :
Oncogene Research Products, Calbiochem, Novagen, Merck, Upstate Biotechnology, Chemicon, LINCO, Novabiochem, Guava
product type :
antibody
product name :
Huntingtin Protein Antibody, clone mEM48
catalog :
MAB5374
quantity :
100 µL
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
mEM48
reactivity :
human, mouse, rat, brewer's yeast
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, immunohistochemistry - free floating section
citations: 105
Published Application/Species/Sample/DilutionReference
  • western blot; mouse; 1:1000; loading ...; fig 5s2a
Moruno Manchon J, Lejault P, Wang Y, McCauley B, Honarpisheh P, Morales Scheihing D, et al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. elife. 2020;9: pubmed publisher
  • immunohistochemistry - free floating section; mouse; 1:100; loading ...; fig 4d
Zeitler B, Froelich S, Marlen K, Shivak D, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med. 2019;25:1131-1142 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:300; loading ...; fig 7a
Fukuoka M, Takahashi M, Fujita H, Chiyo T, Popiel H, Watanabe S, et al. Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. Mol Ther Nucleic Acids. 2018;11:79-90 pubmed publisher
  • immunocytochemistry; human; 1:50; loading ...; fig 4c
Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed publisher
  • western blot; human; 1:500; loading ...; fig 6
Kolli N, Lu M, Maiti P, Rossignol J, Dunbar G. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. Int J Mol Sci. 2017;18: pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2f
  • western blot; brewer's yeast; fig 1c
Vicente Miranda H, Gomes M, Branco Santos J, Breda C, Lázaro D, Lopes L, et al. Glycation potentiates neurodegeneration in models of Huntington's disease. Sci Rep. 2016;6:36798 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig 7a
Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed publisher
  • western blot; mouse; 1:500; loading ...; fig 8
Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 2b
Guo X, Sun X, Hu D, Wang Y, Fujioka H, Vyas R, et al. VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington's disease. Nat Commun. 2016;7:12646 pubmed publisher
  • immunohistochemistry; mouse; 1:100; fig 1
Agostoni E, Michelazzi S, Maurutto M, Carnemolla A, Ciani Y, Vatta P, et al. Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice. Front Cell Neurosci. 2016;10:110 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:500; fig 2
Bayram Weston Z, Jones L, Dunnett S, Brooks S. Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS ONE. 2016;11:e0155834 pubmed publisher
  • western blot; mouse; 1:1000; fig 2
Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:50
  • western blot; mouse; 1:500
O Brien R, DeGiacomo F, Holcomb J, Bonner A, Ring K, Zhang N, et al. Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. J Biol Chem. 2015;290:19287-306 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 6e
Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. elife. 2015;4:e06734 pubmed publisher
  • immunohistochemistry - paraffin section; mouse
  • immunocytochemistry; mouse; fig 1
Shen W, Li H, Chen G, Chern Y, Tu P. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy. 2015;11:685-700 pubmed publisher
  • immunohistochemistry - free floating section; mouse; 1:100
Doria J, de Souza J, Andrade J, Rodrigues H, Guimaraes I, Carvalho T, et al. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Neurobiol Dis. 2015;73:163-73 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:500
Blum D, Herrera F, Francelle L, Mendes T, Basquin M, Obriot H, et al. Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Hum Mol Genet. 2015;24:76-85 pubmed publisher
  • immunohistochemistry - free floating section; human
Corrochano S, Renna M, Osborne G, Carter S, Stewart M, May J, et al. Reducing Igf-1r levels leads to paradoxical and sexually dimorphic effects in HD mice. PLoS ONE. 2014;9:e105595 pubmed publisher
  • immunocytochemistry; rat; 1:1000
  • western blot; rat; 1:1000
Stansfield K, Bichell T, Bowman A, Guilarte T. BDNF and Huntingtin protein modifications by manganese: implications for striatal medium spiny neuron pathology in manganese neurotoxicity. J Neurochem. 2014;131:655-66 pubmed publisher
  • western blot; mouse; 1:1000
Zhang H, Petit G, Gaughwin P, Hansen C, Ranganathan S, Zuo X, et al. NGF rescues hippocampal cholinergic neuronal markers, restores neurogenesis, and improves the spatial working memory in a mouse model of Huntington's Disease. J Huntingtons Dis. 2013;2:69-82 pubmed publisher
  • immunohistochemistry; mouse; 1:100
  • immunohistochemistry - paraffin section; human; 1:100
Fernández Nogales M, Cabrera J, Santos Galindo M, Hoozemans J, Ferrer I, Rozemuller A, et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med. 2014;20:881-5 pubmed publisher
  • immunohistochemistry; human; 1:2000
Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint Pierre M, St Amour I, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76:31-42 pubmed publisher
  • western blot; rat; 1:1000
Lai A, Lan C, Hasan S, Brown M, McLaurin J. scyllo-Inositol promotes robust mutant Huntingtin protein degradation. J Biol Chem. 2014;289:3666-76 pubmed publisher
  • western blot; mouse; 1:100
Perucho J, Casarejos M, Gomez A, Ruiz C, Fernandez Estevez M, Muñoz M, et al. Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS ONE. 2013;8:e73120 pubmed publisher
  • immunohistochemistry; mouse
Valor L, Guiretti D, Lopez Atalaya J, Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J Neurosci. 2013;33:10471-82 pubmed publisher
  • immunocytochemistry; human
Lu B, Palacino J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. FASEB J. 2013;27:1820-9 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:250
Popiel H, Takeuchi T, Fujita H, Yamamoto K, Ito C, Yamane H, et al. Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism. PLoS ONE. 2012;7:e51069 pubmed publisher
  • immunohistochemistry - free floating section; mouse; 1:300
Horne E, Coy J, Swinney K, Fung S, Cherry A, Marrs W, et al. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington's disease and mouse models. Eur J Neurosci. 2013;37:429-40 pubmed publisher
  • western blot; mouse; fig 2
Rahman A, Ekman M, Shakirova Y, Andersson K, Morgelin M, Erjefalt J, et al. Late onset vascular dysfunction in the R6/1 model of Huntington's disease. Eur J Pharmacol. 2013;698:345-53 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:300
Yu Taeger L, Petrasch Parwez E, Osmand A, Redensek A, Metzger S, Clemens L, et al. A novel BACHD transgenic rat exhibits characteristic neuropathological features of Huntington disease. J Neurosci. 2012;32:15426-38 pubmed publisher
Huang T, Smith R, Bacos K, Song D, Faull R, Waldvogel H, et al. No symphony without bassoon and piccolo: changes in synaptic active zone proteins in Huntington's disease. Acta Neuropathol Commun. 2020;8:77 pubmed publisher
Ekman F, Ojala D, Adil M, Lopez P, Schaffer D, Gaj T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington's Disease Mouse Model. Mol Ther Nucleic Acids. 2019;17:829-839 pubmed publisher
Ochaba J, Fote G, Kachemov M, Thein S, Yeung S, Lau A, et al. IKKβ slows Huntington's disease progression in R6/1 mice. Proc Natl Acad Sci U S A. 2019;116:10952-10961 pubmed publisher
Masnata M, Sciacca G, Maxan A, Bousset L, Denis H, Lauruol F, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137:981-1001 pubmed publisher
Zhao Q, Busch B, Jiménez Soto L, Ishikawa Ankerhold H, Massberg S, Terradot L, et al. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog. 2018;14:e1007359 pubmed publisher
Maxan A, Mason S, Saint Pierre M, Smith E, Ho A, Harrower T, et al. Outcome of cell suspension allografts in a patient with Huntington's disease. Ann Neurol. 2018;84:950-956 pubmed publisher
Novati A, Yu Taeger L, González Menéndez I, Quintanilla Martinez L, Nguyen H. Sexual behavior and testis morphology in the BACHD rat model. PLoS ONE. 2018;13:e0198338 pubmed publisher
Brilha S, Wysoczanski R, Whittington A, Friedland J, Porter J. Monocyte Adhesion, Migration, and Extracellular Matrix Breakdown Are Regulated by Integrin ?V?3 in Mycobacterium tuberculosis Infection. J Immunol. 2017;199:982-991 pubmed publisher
Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed publisher
Gasset Rosa F, Chillon Marinas C, Goginashvili A, Atwal R, Artates J, Tabet R, et al. Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron. 2017;94:48-57.e4 pubmed publisher
Giampietro C, Lionetti M, Costantini G, Mutti F, Zapperi S, La Porta C. Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep. 2017;7:43669 pubmed publisher
Benraiss A, Wang S, Herrlinger S, Li X, Chandler Militello D, Mauceri J, et al. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun. 2016;7:11758 pubmed publisher
Naranjo J, Zhang H, Villar D, González P, Dopazo X, Morón Oset J, et al. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J Clin Invest. 2016;126:627-38 pubmed publisher
Morozova O, Gupta S, Colby D. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015;589:1897-903 pubmed publisher
Carty N, Berson N, Tillack K, Thiede C, Scholz D, Kottig K, et al. Characterization of HTT inclusion size, location, and timing in the zQ175 mouse model of Huntington's disease: an in vivo high-content imaging study. PLoS ONE. 2015;10:e0123527 pubmed publisher
Cheng H, Chern Y, Chen I, Liu C, Li S, Chun S, et al. Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown. PLoS Genet. 2015;11:e1005043 pubmed publisher
Berggren K, Chen J, Fox J, Miller J, Dodds L, Dugas B, et al. Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease. Redox Biol. 2015;4:363-74 pubmed publisher
Ragauskas S, Leinonen H, Puranen J, Rönkkö S, Nymark S, Gurevicius K, et al. Early retinal function deficit without prominent morphological changes in the R6/2 mouse model of Huntington's disease. PLoS ONE. 2014;9:e113317 pubmed publisher
Francelle L, Galvan L, Gaillard M, Guillermier M, Houitte D, Bonvento G, et al. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Hum Mol Genet. 2015;24:1563-73 pubmed publisher
Arribat Y, Talmat Amar Y, Paucard A, Lesport P, Bonneaud N, Bauer C, et al. Systemic delivery of P42 peptide: a new weapon to fight Huntington's disease. Acta Neuropathol Commun. 2014;2:86 pubmed publisher
Yano H, Baranov S, Baranova O, Kim J, Pan Y, Yablonska S, et al. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci. 2014;17:822-31 pubmed publisher
Yamanaka T, Wong H, Tosaki A, Bauer P, Wada K, Kurosawa M, et al. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation. PLoS ONE. 2014;9:e93891 pubmed publisher
Proenca C, Stoehr N, Bernhard M, Seger S, Genoud C, Roscic A, et al. Atg4b-dependent autophagic flux alleviates Huntington's disease progression. PLoS ONE. 2013;8:e68357 pubmed publisher
Strong M, Southwell A, Yonan J, Hayden M, MacGregor G, Thompson L, et al. Age-Dependent Resistance to Excitotoxicity in Htt CAG140 Mice and the Effect of Strain Background. J Huntingtons Dis. 2012;1:221-41 pubmed publisher
Damiano M, Diguet E, Malgorn C, D Aurelio M, Galvan L, Petit F, et al. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet. 2013;22:3869-82 pubmed publisher
Garriga Canut M, Agustín Pavón C, Herrmann F, Sanchez A, Dierssen M, Fillat C, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012;109:E3136-45 pubmed publisher
Kovalenko M, Dragileva E, St Claire J, Gillis T, Guide J, New J, et al. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice. PLoS ONE. 2012;7:e44273 pubmed publisher
Tada M, Coon E, Osmand A, Kirby P, Martin W, Wieler M, et al. Coexistence of Huntington's disease and amyotrophic lateral sclerosis: a clinicopathologic study. Acta Neuropathol. 2012;124:749-60 pubmed publisher
Gabery S, Sajjad M, Hult S, Soylu R, Kirik D, Petersen A. Characterization of a rat model of Huntington's disease based on targeted expression of mutant huntingtin in the forebrain using adeno-associated viral vectors. Eur J Neurosci. 2012;36:2789-800 pubmed publisher
Stansfield K, Pilsner J, Lu Q, Wright R, Guilarte T. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): implications for an environmental basis of neurodevelopmental disorders. Toxicol Sci. 2012;127:277-95 pubmed publisher
Schwab C, Yu S, McGeer P. Optineurin is colocalized with ubiquitin in Marinesco bodies. Acta Neuropathol. 2012;123:289-92 pubmed publisher
Schwab C, Yu S, McGeer E, McGeer P. Optineurin in Huntington's disease intranuclear inclusions. Neurosci Lett. 2012;506:149-54 pubmed publisher
Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J Neurochem. 2011;119:398-407 pubmed publisher
Sellamuthu S, Shin B, Han H, Park S, Oh H, Rho S, et al. An engineered viral protease exhibiting substrate specificity for a polyglutamine stretch prevents polyglutamine-induced neuronal cell death. PLoS ONE. 2011;6:e22554 pubmed publisher
Reinhart P, Kaltenbach L, Essrich C, Dunn D, Eudailey J, DeMarco C, et al. Identification of anti-inflammatory targets for Huntington's disease using a brain slice-based screening assay. Neurobiol Dis. 2011;43:248-56 pubmed publisher
Lin Y, Chen C, Soong B, Wu Y, Chen H, Yeh W, et al. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest. 2011;121:1519-23 pubmed publisher
Zadori D, Nyiri G, Szonyi A, Szatmari I, Fulop F, Toldi J, et al. Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington's disease. J Neural Transm (Vienna). 2011;118:865-75 pubmed publisher
Rising A, Xu J, Carlson A, Napoli V, Denovan Wright E, Mandel R. Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington's disease with 140 CAG repeats. Exp Neurol. 2011;228:173-82 pubmed publisher
Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti F, Fusco F. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease. PLoS ONE. 2010;5:e13417 pubmed publisher
Lotz G, Legleiter J, Aron R, Mitchell E, Huang S, Ng C, et al. Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J Biol Chem. 2010;285:38183-93 pubmed publisher
Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, et al. Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease. BMC Neurosci. 2010;11:114 pubmed publisher
Klevytska A, Tebbenkamp A, Savonenko A, Borchelt D. Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease. J Neuropathol Exp Neurol. 2010;69:396-404 pubmed publisher
Legleiter J, Mitchell E, Lotz G, Sapp E, Ng C, DiFiglia M, et al. Mutant huntingtin fragments form oligomers in a polyglutamine length-dependent manner in vitro and in vivo. J Biol Chem. 2010;285:14777-90 pubmed publisher
Ortega Z, Diaz Hernandez M, Maynard C, Hernandez F, Dantuma N, Lucas J. Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation. J Neurosci. 2010;30:3675-88 pubmed publisher
Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Furukawa Y, Yamada M, et al. Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Hum Mol Genet. 2010;19:2099-112 pubmed publisher
Thompson L, Aiken C, Kaltenbach L, Agrawal N, Illes K, Khoshnan A, et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 2009;187:1083-99 pubmed publisher
Doumanis J, Wada K, Kino Y, Moore A, Nukina N. RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. PLoS ONE. 2009;4:e7275 pubmed publisher
Maynard C, Böttcher C, Ortega Z, Smith R, Florea B, Diaz Hernandez M, et al. Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proc Natl Acad Sci U S A. 2009;106:13986-91 pubmed publisher
Weiss A, Roscic A, Paganetti P. Inducible mutant huntingtin expression in HN10 cells reproduces Huntington's disease-like neuronal dysfunction. Mol Neurodegener. 2009;4:11 pubmed publisher
Tang T, Guo C, Wang H, Chen X, Bezprozvanny I. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci. 2009;29:1257-66 pubmed publisher
Illuzzi J, Yerkes S, Parekh Olmedo H, Kmiec E. DNA breakage and induction of DNA damage response proteins precede the appearance of visible mutant huntingtin aggregates. J Neurosci Res. 2009;87:733-47 pubmed publisher
Popiel H, Nagai Y, Fujikake N, Toda T. Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neurosci Lett. 2009;449:87-92 pubmed publisher
Desplats P, Lambert J, Thomas E. Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease. Neurobiol Dis. 2008;31:298-308 pubmed publisher
Shao J, Welch W, DiProspero N, Diamond M. Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation. Mol Cell Biol. 2008;28:5196-208 pubmed publisher
Wang J, Wang C, Orr A, Tydlacka S, Li S, Li X. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J Cell Biol. 2008;180:1177-89 pubmed publisher
Lim H, Lee S, Chu K, Joo K, Kang L, Im W, et al. Neuroprotective effect of neural stem cell-conditioned media in in vitro model of Huntington's disease. Neurosci Lett. 2008;435:175-80 pubmed publisher
Yamanaka T, Miyazaki H, Oyama F, Kurosawa M, Washizu C, Doi H, et al. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J. 2008;27:827-39 pubmed publisher
Bacos K, Björkqvist M, Petersen A, Luts L, Maat Schieman M, Roos R, et al. Islet beta-cell area and hormone expression are unaltered in Huntington's disease. Histochem Cell Biol. 2008;129:623-9 pubmed publisher
Doi H, Okamura K, Bauer P, Furukawa Y, Shimizu H, Kurosawa M, et al. RNA-binding protein TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells. J Biol Chem. 2008;283:6489-500 pubmed publisher
Josefsen K, Nielsen M, Jørgensen K, Bock T, Nørremølle A, Sørensen S, et al. Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington's disease. J Neuroendocrinol. 2008;20:165-72 pubmed
Weiss A, Klein C, Woodman B, Sathasivam K, Bibel M, Regulier E, et al. Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington's disease. J Neurochem. 2008;104:846-58 pubmed
Charvin D, Roze E, Perrin V, Deyts C, Betuing S, Pages C, et al. Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis. 2008;29:22-9 pubmed
Van Raamsdonk J, Murphy Z, Selva D, Hamidizadeh R, Pearson J, Petersen A, et al. Testicular degeneration in Huntington disease. Neurobiol Dis. 2007;26:512-20 pubmed
Schilling G, Klevytska A, Tebbenkamp A, Juenemann K, Cooper J, Gonzales V, et al. Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol. 2007;66:313-20 pubmed
Perrin V, Regulier E, Abbas Terki T, Hassig R, Brouillet E, Aebischer P, et al. Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington's disease. Mol Ther. 2007;15:903-11 pubmed
Ryan A, Zeitlin S, Scrable H. Genetic interaction between expanded murine Hdh alleles and p53 reveal deleterious effects of p53 on Huntington's disease pathogenesis. Neurobiol Dis. 2006;24:419-27 pubmed
Diaz Hernandez M, Valera A, Morán M, Gómez Ramos P, Alvarez Castelao B, Castaño J, et al. Inhibition of 26S proteasome activity by huntingtin filaments but not inclusion bodies isolated from mouse and human brain. J Neurochem. 2006;98:1585-96 pubmed
van Roon Mom W, Hogg V, Tippett L, Faull R. Aggregate distribution in frontal and motor cortex in Huntington's disease brain. Neuroreport. 2006;17:667-70 pubmed
Benchoua A, Trioulier Y, Zala D, Gaillard M, Lefort N, Dufour N, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell. 2006;17:1652-63 pubmed
Diaz Hernandez M, Torres Peraza J, Salvatori Abarca A, Morán M, Gómez Ramos P, Alberch J, et al. Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a conditional mouse model of Huntington's disease. J Neurosci. 2005;25:9773-81 pubmed
Papalexi E, Persson A, Björkqvist M, Petersen A, Woodman B, Bates G, et al. Reduction of GnRH and infertility in the R6/2 mouse model of Huntington's disease. Eur J Neurosci. 2005;22:1541-6 pubmed
Wang Y, Liu W, Wada E, Murata M, Wada K, Kanazawa I. Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA. Neurosci Res. 2005;53:241-9 pubmed
Chen Z, Kren B, Wong P, Low W, Steer C. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun. 2005;329:646-52 pubmed
Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol. 2003;161:945-56 pubmed
Brdicka T, Pavlistová D, Leo A, Bruyns E, Korinek V, Angelisova P, et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med. 2000;191:1591-604 pubmed
product information
Catalog Number :
MAB5374
Subcategory :
Neuroscience
Product Name :
Anti-Huntingtin Protein Antibody, clone mEM48
Product Type :
Antibodies
Clonality :
Monoclonal Antibody
Gene ID :
P42858
Host Name :
Mouse
Antigen :
Huntingtin Protein
Clone :
mEM48
Conjugate :
Culture Supernatant
Isotype :
IgG
Product Description :
Anti-Huntingtin Protein Antibody, clone mEM48
Cross Reactivity :
Human;Rat;Mouse
Background :
Huntington disease (HD) is a hereditary, progressive, neurodegenerative ailment characterized by personality changes, motor impairment and subcortical dementia. The molecular basis of the disease involves the expansion of the trinucleotide CAG, coding for polyglutamine in the first exon of a chromosome four gene (4p16.3), which normally produces a widely expressed 3136 a.a. (~350 kDa) protein huntingtin with unclear function. The protein is found in the perinuclear region along with microtubules, and in the centrosomal region along with gamma-tubulin. Huntingtin is necessary for neuronal survival and is involved in synaptic vesicle trafficking, microtubule binding and may also have a role in apoptosis. In the HD condition, neuronal cells with the mutant form of huntingtin possess intranuclear aggregations of the N-terminal fragment, causing damaging inclusions in perinuclear locations and striatal neuron cell death. Wild-type huntington and anti-huntingtin reduce aggregation and cellular toxicity of the mutant huntingtin form in mammalian cell models of HD. Huntingtin is known to interact with GAPDH, HAP-1, SP1 and TAFII130.
ALT Names :
Huntingtin
Immunogen :
GST fusion protein from the first 256 amino acids from human huntingtin with the deletion of the polyglutamine tract.
Specificity :
Reacts with human huntingtin protein (both native and recombinant protein). MAB5374 reacts with mutant huntingtin in patients and in transgenic animals that express different numbers of repeats (from 82 to 150 glutamines). Thus, it should recognize different forms of mutant huntingtin.
Package Size :
100 µL
Uses :
Immunocytochemistry;Immunohistochemistry;Western Blotting
Storage :
Stable for 6 months at -20ºC in undiluted aliquots from date of receipt. Handling Recommendations: Upon receipt, and prior to removing the cap, centrifuge the vial and gently mix the solution. Aliquot into microcentrifuge tubes and store at -20°C. Avoid repeated freeze/thaw cycles, which may damage IgG and affect product performance.
company information
EMD Millipore
290 Concord Road
Billerica, Massachusetts 01821
bioscienceshelp@emdchemical.com
https://www.emdmillipore.com
888-854-3417
headquarters: United States
EMD Millipore is the Life Science division of Merck KGaA of Darmstadt, Germany

Hundreds of New Antibodies in the areas of:
  • • Cancer
  • • Nuclear Signaling
  • • Apoptosis
  • • Cardiovascular Disease
  • • Developmental Biology
  • • Metabolic Disease
  • • Neurodegenerative Disease
  • • Cell Biology
View all the new antibodies at www.emdmillipore.com.