This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
EMD Millipore
other brands :
Oncogene Research Products, Calbiochem, Novagen, Merck, Upstate Biotechnology, Chemicon, LINCO, Novabiochem, Guava
product type :
antibody
product name :
NMDAR1 Antibody, clone 54.1
catalog :
MAB363
quantity :
100 μg
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
54.1

The same clone is also sold as:
reactivity :
human, mouse, rat, Xenopus laevis
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, radioimmunoassay, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, immunohistochemistry - free floating section
citations: 61
Published Application/Species/Sample/DilutionReference
  • western blot; mouse; 1:500; loading ...; fig 6h
Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, et al. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. elife. 2020;9: pubmed publisher
  • immunohistochemistry; Xenopus laevis; 1:500; loading ...; fig s3a
  • western blot; Xenopus laevis; 1:1000; loading ...; fig s2a
Hammond Weinberger D, Wang Y, Glavis Bloom A, Spitzer N. Mechanism for neurotransmitter-receptor matching. Proc Natl Acad Sci U S A. 2020;117:4368-4374 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 2c
Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed publisher
  • western blot; rat; 1:200; loading ...; fig 5a
Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 4b
Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed publisher
  • immunocytochemistry; rat; loading ...; fig 2a
  • western blot; rat; loading ...; fig 2c
Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed publisher
  • western blot; mouse; 1:3000; fig 5
Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed publisher
  • western blot; rat; fig 3c
Corbel C, Hernandez I, Wu B, Kosik K. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 2015;10:20 pubmed publisher
  • western blot; rat; 1:5
Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed publisher
  • immunocytochemistry; mouse
Hsu W, Chung H, Wu C, Wu H, Lee Y, Chen E, et al. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem. 2015;290:20748-60 pubmed publisher
  • western blot; mouse; 1:500
Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:100
Stensrud M, Sogn C, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol. 2015;523:2698-713 pubmed publisher
  • immunocytochemistry; human; 1:500
Ramberger M, Peschl P, Schanda K, Irschick R, Höftberger R, Deisenhammer F, et al. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay. PLoS ONE. 2015;10:e0122037 pubmed publisher
  • western blot; mouse; 1:10,000; loading ...; fig 1e
Darvas M, Palmiter R. Specific contributions of N-methyl-D-aspartate receptors in the dorsal striatum to cognitive flexibility. Neuroscience. 2015;284:934-42 pubmed publisher
  • western blot; mouse; 1:500; fig 5
Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed publisher
  • immunohistochemistry - frozen section; rat
Rubio M, Fukazawa Y, Kamasawa N, Clarkson C, Molnar E, Shigemoto R. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. J Comp Neurol. 2014;522:4023-42 pubmed publisher
  • western blot; rat
Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed publisher
  • immunocytochemistry; human; 1:500
Kalev Zylinska M, Green T, Morel Kopp M, Sun P, Park Y, Lasham A, et al. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Thromb Res. 2014;133:837-47 pubmed publisher
  • western blot; Xenopus laevis; 1:500
Kazi R, Gan Q, Talukder I, Markowitz M, Salussolia C, Wollmuth L. Asynchronous movements prior to pore opening in NMDA receptors. J Neurosci. 2013;33:12052-66 pubmed publisher
  • immunocytochemistry; mouse; 1:200
Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed publisher
  • immunocytochemistry; rat; 1:10
  • western blot; rat; 1:1000
Swulius M, Kubota Y, Forest A, Waxham M. Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010;518:4243-60 pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:200
Tse Y, Lai C, Lai S, Liu J, Yung K, Shum D, et al. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol. 2008;508:343-64 pubmed publisher
Simhal A, Gong B, Trimmer J, Weinberg R, Smith S, Sapiro G, et al. A Computational Synaptic Antibody Characterization Tool for Array Tomography. Front Neuroanat. 2018;12:51 pubmed publisher
Saab A, Tzvetavona I, Trevisiol A, Baltan S, Dibaj P, Kusch K, et al. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron. 2016;91:119-32 pubmed publisher
Rodenas Cuadrado P, Chen X, Wiegrebe L, Firzlaff U, Vernes S. A novel approach identifies the first transcriptome networks in bats: a new genetic model for vocal communication. BMC Genomics. 2015;16:836 pubmed publisher
Qiu S, Lu Z, Levitt P. MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci. 2014;34:16166-79 pubmed publisher
Ballesteros Merino C, Watanabe M, Shigemoto R, Fukazawa Y, Adelman J, Lujan R. Differential subcellular localization of SK3-containing channels in the hippocampus. Eur J Neurosci. 2014;39:883-92 pubmed publisher
Han K, Holder J, Schaaf C, Lu H, Chen H, Kang H, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature. 2013;503:72-7 pubmed publisher
Marco S, Giralt A, Petrovic M, Pouladi M, Mart nez Turrillas R, Mart nez Hern ndez J, et al. Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat Med. 2013;19:1030-8 pubmed publisher
Balasuriya D, Goetze T, Barrera N, Stewart A, Suzuki Y, Edwardson J. ?-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors adopt different subunit arrangements. J Biol Chem. 2013;288:21987-98 pubmed publisher
Kalev Zylinska M, Symes W, Little K, Sun P, Wen D, Qiao L, et al. Stroke patients develop antibodies that react with components of N-methyl-D-aspartate receptor subunit 1 in proportion to lesion size. Stroke. 2013;44:2212-9 pubmed publisher
Naylor D, Liu H, Niquet J, Wasterlain C. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis. 2013;54:225-38 pubmed publisher
Suzuki Y, Goetze T, Stroebel D, Balasuriya D, Yoshimura S, Henderson R, et al. Visualization of structural changes accompanying activation of N-methyl-D-aspartate (NMDA) receptors using fast-scan atomic force microscopy imaging. J Biol Chem. 2013;288:778-84 pubmed publisher
Kaufmann W, Matsui K, Jeromin A, Nerbonne J, Ferraguti F. Kv4.2 potassium channels segregate to extrasynaptic domains and influence intrasynaptic NMDA receptor NR2B subunit expression. Brain Struct Funct. 2013;218:1115-32 pubmed publisher
Lin L, Nitschke Dragon D, Jin J, Tian X, Chu Y, SIGMUND C, et al. Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. J Physiol. 2012;590:3545-59 pubmed publisher
Cser p C, Szabadits E, Sz nyi A, Watanabe M, Freund T, Nyiri G. NMDA receptors in GABAergic synapses during postnatal development. PLoS ONE. 2012;7:e37753 pubmed publisher
Riou M, Stroebel D, Edwardson J, Paoletti P. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors. PLoS ONE. 2012;7:e35134 pubmed publisher
Meyer D, Lindemeyer A, Wilmes T, Sobottka H, Nörenberg W. GluA and GluN receptors regulate the surface density of GluN receptor subunits in cultured neocortical interneurons. J Neurochem. 2012;121:597-606 pubmed publisher
Mori Y, Matsui T, Furutani Y, Yoshihara Y, Fukuda M. Small GTPase Rab17 regulates dendritic morphogenesis and postsynaptic development of hippocampal neurons. J Biol Chem. 2012;287:8963-73 pubmed publisher
Yuan C, Hsu G, Lee Y. Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats. J Biomed Sci. 2011;18:81 pubmed publisher
Salussolia C, Prodromou M, Borker P, Wollmuth L. Arrangement of subunits in functional NMDA receptors. J Neurosci. 2011;31:11295-304 pubmed publisher
Micheva K, Busse B, Weiler N, O Rourke N, Smith S. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron. 2010;68:639-53 pubmed publisher
Hemby S, Tannu N. Modeling substance abuse for applications in proteomics. Methods Mol Biol. 2009;566:69-83 pubmed publisher
Zhou M, Lei Z, Li H, Yi W, Zhang Z, Guo A. NMDA receptors-dependent plasticity in the phototaxis preference behavior induced by visual deprivation in young and adult flies. Genes Brain Behav. 2010;9:325-34 pubmed publisher
Tarusawa E, Matsui K, Budisantoso T, Molnar E, Watanabe M, Matsui M, et al. Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses. J Neurosci. 2009;29:12896-908 pubmed publisher
Fan J, Cowan C, Zhang L, Hayden M, Raymond L. Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington's disease. J Neurosci. 2009;29:10928-38 pubmed publisher
Jeyifous O, Waites C, Specht C, Fujisawa S, Schubert M, Lin E, et al. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci. 2009;12:1011-9 pubmed publisher
Cowan C, Fan M, Fan J, Shehadeh J, Zhang L, Graham R, et al. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci. 2008;28:12725-35 pubmed publisher
Rivera Cervantes M, Flores Soto M, Chaparro Huerta V, Reyes Gómez J, Feria Velasco A, Schliebs R, et al. Changes in hippocampal NMDA-R subunit composition induced by exposure of neonatal rats to L-glutamate. Int J Dev Neurosci. 2009;27:197-204 pubmed publisher
Pauly T, Ratliff M, Pietrowski E, Neugebauer R, Schlicksupp A, Kirsch J, et al. Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a PUTATIVE mechanism of postsynaptic plasticity. PLoS ONE. 2008;3:e2681 pubmed publisher
Kolodziejczyk A, Sun X, Meinertzhagen I, Nassel D. Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS ONE. 2008;3:e2110 pubmed publisher
Petralia S, DeBold J, Frye C. MK-801 infusions to the ventral tegmental area and ventromedial hypothalamus produce opposite effects on lordosis of hormone-primed rats. Pharmacol Biochem Behav. 2007;86:377-85 pubmed
Zhao H, Christian S, Castillo M, Bult Ito A, Drew K. Distribution of NMDA receptor subunit NR1 in arctic ground squirrel central nervous system. J Chem Neuroanat. 2006;32:196-207 pubmed
Rash J, Davidson K, Kamasawa N, Yasumura T, Kamasawa M, Zhang C, et al. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J Neurocytol. 2005;34:307-41 pubmed
Reigada D, Lu W, Mitchell C. Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol. 2006;575:707-20 pubmed
O Connor J, Hasenkamp W, Horman B, Muly E, Hemby S. Region specific regulation of NR1 in rhesus monkeys following chronic antipsychotic drug administration. Biol Psychiatry. 2006;60:659-62 pubmed
Zannat M, Locatelli F, Rybak J, Menzel R, Leboulle G. Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett. 2006;398:274-9 pubmed
Bradley J, Carter S, Rao V, Wang J, Finkbeiner S. Splice variants of the NR1 subunit differentially induce NMDA receptor-dependent gene expression. J Neurosci. 2006;26:1065-76 pubmed
Lindemeyer K, Leemhuis J, Löffler S, Grass N, Nörenberg W, Meyer D. Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons. Cereb Cortex. 2006;16:1662-77 pubmed
Hemby S, Tang W, Muly E, Kuhar M, Howell L, Mash D. Cocaine-induced alterations in nucleus accumbens ionotropic glutamate receptor subunits in human and non-human primates. J Neurochem. 2005;95:1785-93 pubmed
Hemby S, Horman B, Tang W. Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res. 2005;1064:75-82 pubmed
product information
Catalog Number :
MAB363
Subcategory :
Neuroscience
Product Name :
Anti-NMDAR1 Antibody, clone 54.1
Product Type :
Antibodies
Clonality :
Monoclonal Antibody
Gene ID :
Q05586
Host Name :
Mouse
Antigen :
NMDAR1
Clone :
54.1
Conjugate :
Purified
Isotype :
IgG2a
Product Description :
Anti-NMDAR1 Antibody, clone 54.1
Cross Reactivity :
Human;Monkey;Rat;Xenopus
Background :
Glutamate is a widely utilized excitatory neurotransmitter in mammalian brain. The ion channels activated by glutamate are typically divided into two classes. Those that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR) while those activated by kainate (KA) and a-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) are referred to as non-NMDA receptors. Two distinct genes encode the NMDA receptor subunits, NR1 and NR2. The NR1 subunit is expressed in abundance in virtually all regions of the brain.
ALT Names :
N-methyl-D-aspartate receptor channel, subunit zeta-1;N-methyl-D-aspartate receptor subunit NR1;NMDA receptor 1;glutamate [NMDA] receptor subunit zeta 1;glutamate receptor, ionotropic, N-methyl D-aspartate 1
Immunogen :
Recombinant fusion protein containing GST and NMDAR1 aa. 660-811.
Specificity :
Recognizes an epitope between amino acids 660-811 of the NMDAR1 receptor. Shows no cross-reactivity with NMDAR2, NMDAR3, NMDAR4 or NMDAR5.
Package Size :
100 μg
Uses :
ELISA;Immunocytochemistry;Immunohistochemistry;Immunohistochemistry (Paraffin);Radioimmunoassay
Storage :
Stable for 1 year at -20ºC from date of receipt.
company information
EMD Millipore
290 Concord Road
Billerica, Massachusetts 01821
bioscienceshelp@emdchemical.com
https://www.emdmillipore.com
888-854-3417
headquarters: United States
EMD Millipore is the Life Science division of Merck KGaA of Darmstadt, Germany

Hundreds of New Antibodies in the areas of:
  • • Cancer
  • • Nuclear Signaling
  • • Apoptosis
  • • Cardiovascular Disease
  • • Developmental Biology
  • • Metabolic Disease
  • • Neurodegenerative Disease
  • • Cell Biology
View all the new antibodies at www.emdmillipore.com.