This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
EMD Millipore
other brands :
Oncogene Research Products, Calbiochem, Novagen, Merck, Upstate Biotechnology, Chemicon, LINCO, Novabiochem, Guava
product type :
antibody
product name :
Glutamate Decarboxylase Antibody, 65 kDa isoform, clone GAD-6
catalog :
MAB351
quantity :
100 μg
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
GAD-6

The same clone is also sold as:
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, immunohistochemistry - free floating section
citations: 74
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; rat; 1:500; loading ...; fig 2a
Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts J, Wagner K, et al. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct. 2020;225:705-734 pubmed publisher
  • western blot; human; 1:1000; loading ...
Pandya M, Palpagama T, Turner C, Waldvogel H, Faull R, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ. 2019;10:5 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 3a
Stuart K, King A, Fernandez Martos C, Dittmann J, Summers M, Vickers J. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of A?-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J Comp Neurol. 2017;525:1797-1810 pubmed publisher
  • immunocytochemistry; mouse; 1:1000; loading ...; fig s6b
Egashira Y, Takase M, Watanabe S, Ishida J, Fukamizu A, Kaneko R, et al. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc Natl Acad Sci U S A. 2016;113:10702-7 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:2000; fig 7
Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed publisher
  • immunohistochemistry; mouse; 1:1000; fig 3
Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed publisher
  • immunocytochemistry; rat; 1:500; fig 5
Digilio L, Yap C, Winckler B. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS ONE. 2015;10:e0140010 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:1000
Javdani F, Holló K, Hegedűs K, Kis G, Hegyi Z, Dócs K, et al. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol. 2015;523:1967-83 pubmed publisher
  • immunocytochemistry; rat; 1:1000
Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed publisher
  • immunocytochemistry; rat; 1:1000
Lorenzo L, Magnussen C, Bailey A, St Louis M, De Koninck Y, Ribeiro Da Silva A. Spatial and temporal pattern of changes in the number of GAD65-immunoreactive inhibitory terminals in the rat superficial dorsal horn following peripheral nerve injury. Mol Pain. 2014;10:57 pubmed publisher
  • immunohistochemistry - frozen section; rat; fig 3
  • immunohistochemistry; rat; fig 2
  • immunohistochemistry - frozen section; mouse; fig 4
  • immunohistochemistry; mouse; fig 4
García Peña C, Kim M, Frade Pérez D, Avila González D, Téllez E, Mastick G, et al. Ascending midbrain dopaminergic axons require descending GAD65 axon fascicles for normal pathfinding. Front Neuroanat. 2014;8:43 pubmed publisher
  • immunocytochemistry; mouse; 1:1000
Koh J, Iwabuchi S, Harata N. Dystonia-associated protein torsinA is not detectable at the nerve terminals of central neurons. Neuroscience. 2013;253:316-29 pubmed publisher
  • immunohistochemistry - free floating section; rat; 1:900
Rostkowski A, Leitermann R, Urban J. Differential activation of neuronal cell types in the basolateral amygdala by corticotropin releasing factor. Neuropeptides. 2013;47:273-80 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:1,000
  • immunohistochemistry - paraffin section; rat; 1:1,000
de Sevilla Müller L, Liu J, Solomon A, Rodriguez A, Brecha N. Expression of voltage-gated calcium channel ?(2)?(4) subunits in the mouse and rat retina. J Comp Neurol. 2013;521:2486-501 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Parajuli L, Fukazawa Y, Watanabe M, Shigemoto R. Subcellular distribution of ?1G subunit of T-type calcium channel in the mouse dorsal lateral geniculate nucleus. J Comp Neurol. 2010;518:4362-74 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:1,000
Naritsuka H, Sakai K, Hashikawa T, Mori K, Yamaguchi M. Perisomatic-targeting granule cells in the mouse olfactory bulb. J Comp Neurol. 2009;515:409-26 pubmed publisher
  • immunocytochemistry; rat; 1:500
Madhavan L, Daley B, Paumier K, Collier T. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol. 2009;515:102-15 pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:200
Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-26 pubmed
  • immunohistochemistry; rat; 1:1,000
Caminos E, Garcia Pino E, Martinez Galan J, Juiz J. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J Comp Neurol. 2007;505:363-78 pubmed
  • immunocytochemistry; rat
Sia G, Beique J, Rumbaugh G, Cho R, Worley P, Huganir R. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron. 2007;55:87-102 pubmed
  • immunohistochemistry - free floating section; rat; 1:500
Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  • immunohistochemistry - free floating section; rat; 1:500
Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed
  • immunohistochemistry; rat; 1:1,000
Talos D, Fishman R, Park H, Folkerth R, Follett P, Volpe J, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42-60 pubmed
  • immunocytochemistry; rat; 1 ug/ml
Swanwick C, Murthy N, Mtchedlishvili Z, Sieghart W, Kapur J. Development of gamma-aminobutyric acidergic synapses in cultured hippocampal neurons. J Comp Neurol. 2006;495:497-510 pubmed
  • immunohistochemistry - frozen section; mouse; 1:500
Lee E, Mann L, Rickman D, Lim E, Chun M, Grzywacz N. AII amacrine cells in the distal inner nuclear layer of the mouse retina. J Comp Neurol. 2006;494:651-62 pubmed
  • immunohistochemistry; rat; 1:1000
Hagiwara A, Fukazawa Y, Deguchi Tawarada M, Ohtsuka T, Shigemoto R. Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J Comp Neurol. 2005;489:195-216 pubmed
  • immunohistochemistry; mouse; 1:500
Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed
Lee S, Kim J. Basal Forebrain Cholinergic-induced Activation of Cholecystokinin Inhibitory Neurons in the Basolateral Amygdala. Exp Neurobiol. 2019;28:320-328 pubmed publisher
Heusinger J, Hildebrandt H, Illing R. Sensory deafferentation modulates and redistributes neurocan in the rat auditory brainstem. Brain Behav. 2019;9:e01353 pubmed publisher
McDermott J, Goldblatt D, Paradis S. Class 4 Semaphorins and Plexin-B receptors regulate GABAergic and glutamatergic synapse development in the mammalian hippocampus. Mol Cell Neurosci. 2018;92:50-66 pubmed publisher
Acker D, Wong I, Kang M, Paradis S. Semaphorin 4D promotes inhibitory synapse formation and suppresses seizures in vivo. Epilepsia. 2018;59:1257-1268 pubmed publisher
Harrington A, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. elife. 2016;5: pubmed publisher
Montesano G, Belfiore M, Ripamonti M, Arena A, Lamanna J, Ferro M, et al. Effects of the Concomitant Activation of ON and OFF Retinal Ganglion Cells on the Visual Thalamus: Evidence for an Enhanced Recruitment of GABAergic Cells. Front Neural Circuits. 2015;9:77 pubmed publisher
Besser S, Sicker M, Marx G, Winkler U, Eulenburg V, Hülsmann S, et al. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons. PLoS ONE. 2015;10:e0129934 pubmed publisher
Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed publisher
Iwabuchi S, Koh J, Wang K, Ho K, Harata N. Minimal Change in the cytoplasmic calcium dynamics in striatal GABAergic neurons of a DYT1 dystonia knock-in mouse model. PLoS ONE. 2013;8:e80793 pubmed publisher
Kaplan J, Mohr C, Rossi D. Opposite actions of alcohol on tonic GABA(A) receptor currents mediated by nNOS and PKC activity. Nat Neurosci. 2013;16:1783-93 pubmed publisher
Fuchs C, Abitbol K, Burden J, Mercer A, Brown L, Iball J, et al. GABA(A) receptors can initiate the formation of functional inhibitory GABAergic synapses. Eur J Neurosci. 2013;38:3146-58 pubmed publisher
Stensrud M, Puchades M, Gundersen V. GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct Funct. 2014;219:1901-12 pubmed publisher
Sherry D, Kanan Y, Hamilton R, Hoffhines A, Arbogast K, Fliesler S, et al. Differential developmental deficits in retinal function in the absence of either protein tyrosine sulfotransferase-1 or -2. PLoS ONE. 2012;7:e39702 pubmed publisher
Mitchell N, Petralia R, Currier D, Wang Y, Kim A, Mattson M, et al. Sonic hedgehog regulates presynaptic terminal size, ultrastructure and function in hippocampal neurons. J Cell Sci. 2012;125:4207-13 pubmed publisher
Moyer C, Delevich K, Fish K, Asafu Adjei J, Sampson A, Dorph Petersen K, et al. Reduced glutamate decarboxylase 65 protein within primary auditory cortex inhibitory boutons in schizophrenia. Biol Psychiatry. 2012;72:734-43 pubmed publisher
Gomez Varela D, Schmidt M, Schoellerman J, Peters E, Berg D. PMCA2 via PSD-95 controls calcium signaling by ?7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci. 2012;32:6894-905 pubmed publisher
Gribaudo S, Bovetti S, Friard O, Denorme M, Oboti L, Fasolo A, et al. Transitory and activity-dependent expression of neurogranin in olfactory bulb tufted cells during mouse postnatal development. J Comp Neurol. 2012;520:3055-69 pubmed publisher
Hegyi Z, Holló K, Kis G, Mackie K, Antal M. Differential distribution of diacylglycerol lipase-alpha and N-acylphosphatidylethanolamine-specific phospholipase d immunoreactivity in the superficial spinal dorsal horn of rats. Glia. 2012;60:1316-29 pubmed publisher
Langlois A, Diabira D, Ferrand N, Porcher C, Gaiarsa J. NMDA-dependent switch of proBDNF actions on developing GABAergic synapses. Cereb Cortex. 2013;23:1085-96 pubmed publisher
Shoykhet M, Simons D, Alexander H, Hosler C, Kochanek P, Clark R. Thalamocortical dysfunction and thalamic injury after asphyxial cardiac arrest in developing rats. J Neurosci. 2012;32:4972-81 pubmed publisher
Dimitrov E, Kim Y, Usdin T. Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J Neurosci. 2011;31:18166-79 pubmed publisher
Mangano C, Colldén G, Meister B. Chemical phenotypes of P2X2 purinoreceptor immunoreactive cell bodies in the area postrema. Purinergic Signal. 2012;8:223-34 pubmed publisher
Anderl S, Freeland M, Kwiatkowski D, Goto J. Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet. 2011;20:4597-604 pubmed publisher
Murata K, Imai M, Nakanishi S, Watanabe D, Pastan I, Kobayashi K, et al. Compensation of depleted neuronal subsets by new neurons in a local area of the adult olfactory bulb. J Neurosci. 2011;31:10540-57 pubmed publisher
de Melo J, Peng G, Chen S, Blackshaw S. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development. 2011;138:2325-36 pubmed publisher
Szabadits E, Cserép C, Szonyi A, Fukazawa Y, Shigemoto R, Watanabe M, et al. NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling. J Neurosci. 2011;31:5893-904 pubmed publisher
Cserép C, Szonyi A, Veres J, Németh B, Szabadits E, de Vente J, et al. Nitric oxide signaling modulates synaptic transmission during early postnatal development. Cereb Cortex. 2011;21:2065-74 pubmed publisher
Fyk Kolodziej B, Shimano T, Gong T, Holt A. Vesicular glutamate transporters: spatio-temporal plasticity following hearing loss. Neuroscience. 2011;178:218-39 pubmed publisher
Zecevic N, Hu F, Jakovcevski I. Interneurons in the developing human neocortex. Dev Neurobiol. 2011;71:18-33 pubmed publisher
Kuramoto E, Fujiyama F, Nakamura K, Tanaka Y, Hioki H, Kaneko T. Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci. 2011;33:95-109 pubmed publisher
Cooke B. Synaptic reorganisation of the medial amygdala during puberty. J Neuroendocrinol. 2011;23:65-73 pubmed publisher
Soussi R, Zhang N, Tahtakran S, Houser C, Esclapez M. Heterogeneity of the supramammillary-hippocampal pathways: evidence for a unique GABAergic neurotransmitter phenotype and regional differences. Eur J Neurosci. 2010;32:771-85 pubmed publisher
Deng J, Rodriguiz R, Hutchinson A, Kim I, Wetsel W, West A. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci. 2010;13:1128-36 pubmed publisher
Swanwick C, Shapiro M, Vicini S, Wenthold R. Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons. Dev Neurobiol. 2010;70:875-83 pubmed publisher
Gallagher S, Witkovsky P, Roux M, Low M, Otero Corchon V, Hentges S, et al. beta-Endorphin expression in the mouse retina. J Comp Neurol. 2010;518:3130-48 pubmed publisher
McDowell K, Hutchinson A, Wong Goodrich S, Presby M, Su D, Rodriguiz R, et al. Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice. J Neurosci. 2010;30:7453-65 pubmed publisher
Ivanova E, Hwang G, Pan Z, Troilo D. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci. 2010;51:5288-96 pubmed publisher
Guo C, Hirano A, Stella S, Bitzer M, Brecha N. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. J Comp Neurol. 2010;518:1647-69 pubmed publisher
Dufour A, Tell F, Kessler J, Baude A. Mixed GABA-glycine synapses delineate a specific topography in the nucleus tractus solitarii of adult rat. J Physiol. 2010;588:1097-115 pubmed publisher
Villapol S, Bonnin P, Fau S, Baud O, Renolleau S, Charriaut Marlangue C. Unilateral blood flow decrease induces bilateral and symmetric responses in the immature brain. Am J Pathol. 2009;175:2111-20 pubmed publisher
Eichler S, Förstera B, Smolinsky B, Jüttner R, Lehmann T, Fähling M, et al. Splice-specific roles of glycine receptor alpha3 in the hippocampus. Eur J Neurosci. 2009;30:1077-91 pubmed publisher
Commons K. Locally collateralizing glutamate neurons in the dorsal raphe nucleus responsive to substance P contain vesicular glutamate transporter 3 (VGLUT3). J Chem Neuroanat. 2009;38:273-81 pubmed publisher
Ciucci F, Putignano E, Baroncelli L, Landi S, Berardi N, Maffei L. Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS ONE. 2007;2:e475 pubmed
Fujiwara Tsukamoto Y, Isomura Y, Imanishi M, Fukai T, Takada M. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci. 2007;25:2713-25 pubmed
Hart S, Snyder M, Smejkalova T, Woolley C. Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1. J Neurosci. 2007;27:2102-11 pubmed
Massey K, Zago W, Berg D. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci. 2006;33:381-8 pubmed
Sherry D, Mitchell R, Standifer K, du Plessis B. Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. BMC Neurosci. 2006;7:54 pubmed publisher
product information
Catalog Number :
MAB351
Subcategory :
Neuroscience
Product Name :
Anti-Glutamate Decarboxylase Antibody, 65 kDa isoform, clone GAD-6
Product Type :
Antibodies
Clonality :
Monoclonal Antibody
Gene ID :
Q05329
Host Name :
Mouse
Antigen :
Glutamate Decarboxylase
Clone :
GAD-6
Conjugate :
Purified
Isotype :
IgG2a
Product Description :
Anti-Glutamate Decarboxylase Antibody, 65 kDa isoform, clone GAD-6
Cross Reactivity :
Human;Rat
Background :
Gutamic acid decarboxylase (GAD; E.C. 4.1.1.15) is the enzyme responsible for the conversion of glutamic acid to gamma-aminobutyric acid (GABA), the major inhibitory transmitter in higher brain regions, and putative paracrine hormone in pancreatic islets. Two molecular forms of GAD (65 kDa and 67 kDa, 64% aa identity between forms) are highly conserved and both forms are expressed in the CNS, pancreatic islet cells, testis, oviduct and ovary. The isoforms are regionally distributed cytoplasmically in the brains of rats and mice (Sheikh, S. et al. 1999). GAD65 is an ampiphilic, membrane-anchored protein (585 a.a.), encoded on human chromosome 10, and is responsible for vesicular GABA production. GAD67 is cytoplasmic (594 a.a.), encoded on chromosome 2, and seems to be responsible for significant cytoplasmic GABA production. GAD expression changes during neural development in rat spinal cord. GAD65 is expressed transiently in commissural axons around E13 but is down regulated the next day while GAD67 expression increases mostly in the somata of those neurons (Phelps, P. et al. 1999). In mature rat pancreas, GAD65 and GAD67 appear to be differentially localized, GAD65 primarily in insulin-containing beta cells and GAD67 in glucagon-containing (A) cells (Li, L. et al. 1995). GAD67 expression seems to be particularly plastic and can change in response to experimental manipulation (for example neuronal stimulation or transection) or disease progression and emergent disorders like schizophrenia (Volk et al., 2000). Colocalization of the two GAD isoforms also shows changes in GAD65/GAD67 distributions correlated with certain disease states such as IDDM and SMS.
ALT Names :
GAD65
Immunogen :
Purified rat brain glutamic acid decarboxylase.
Specificity :
Recognizes the lower molecular weight isoform of the two GAD isoforms identified in brain (Gottlieb, et al., 1986; Chang & Gottlieb, 1988). This monclonal antibody can be used for immunohistochemical localization in brain or pancreas. Anti-GAD has also been used to label purified GAD on Western blots (Chang & Gottlieb, 1988).
Package Size :
100 μg
Uses :
Immunohistochemistry;Western Blotting
Storage :
Maintain lyophilized material at -20°C for up to 12 months. After reconstitution maintain frozen at -20°C in undiluted aliquots for up to 6 months. Avoid repeated freeze/thaw cycles.
company information
EMD Millipore
290 Concord Road
Billerica, Massachusetts 01821
bioscienceshelp@emdchemical.com
https://www.emdmillipore.com
888-854-3417
headquarters: United States
EMD Millipore is the Life Science division of Merck KGaA of Darmstadt, Germany

Hundreds of New Antibodies in the areas of:
  • • Cancer
  • • Nuclear Signaling
  • • Apoptosis
  • • Cardiovascular Disease
  • • Developmental Biology
  • • Metabolic Disease
  • • Neurodegenerative Disease
  • • Cell Biology
View all the new antibodies at www.emdmillipore.com.