This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
EMD Millipore
other brands :
Oncogene Research Products, Calbiochem, Novagen, Merck, Upstate Biotechnology, Chemicon, LINCO, Novabiochem, Guava
product type :
antibody
product name :
CTCF Antibody
catalog :
07-729
quantity :
200 µL
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
reactivity :
human, mouse, dogs
application :
western blot, immunoprecipitation, EMSA, chromatin immunoprecipitation, ChIP-Seq
citations: 42
Published Application/Species/Sample/DilutionReference
  • ChIP-Seq; human; 1:88; loading ...; fig 5f
Tsujimura T, Takase O, Yoshikawa M, Sano E, Hayashi M, Hoshi K, et al. Controlling gene activation by enhancers through a drug-inducible topological insulator. elife. 2020;9: pubmed publisher
  • chromatin immunoprecipitation; mouse; loading ...; fig e1g
Zhang H, Emerson D, Gilgenast T, Titus K, Lan Y, Huang P, et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature. 2019;576:158-162 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig 5a
Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, et al. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res. 2019;47:4449-4461 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig e6j
MONAHAN K, HORTA A, Lomvardas S. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature. 2019;565:448-453 pubmed publisher
  • chromatin immunoprecipitation; human; loading ...; fig 2f
Rubin A, Barajas B, Furlan Magaril M, Lopez Pajares V, Mumbach M, Howard I, et al. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet. 2017;49:1522-1528 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig 1c
Busslinger G, Stocsits R, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature. 2017;544:503-507 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig 1
Lee H, Willi M, Wang C, Yang C, Smith H, Liu C, et al. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res. 2017;45:4606-4618 pubmed publisher
  • EMSA; human; loading ...; fig 5d
Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D. Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics. 2017;12:226-237 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig 5a
Wu H, Gordon J, Whitfield T, Tai P, Van Wijnen A, Stein J, et al. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochim Biophys Acta Gene Regul Mech. 2017;1860:438-449 pubmed publisher
  • ChIP-Seq; mouse; loading ...; fig 7a
  • chromatin immunoprecipitation; human; loading ...; fig s7a
Herzig Y, Nevo S, Bornstein C, Brezis M, Ben Hur S, Shkedy A, et al. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017;18:161-172 pubmed publisher
  • ChIP-Seq; mouse; fig 2
Uusküla Reimand L, Hou H, Samavarchi Tehrani P, Rudan M, Liang M, Medina Rivera A, et al. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol. 2016;17:182 pubmed publisher
  • ChIP-Seq; human; loading ...; fig 2a
Platt J, Salama R, Smythies J, Choudhry H, Davies J, Hughes J, et al. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO Rep. 2016;17:1410-1421 pubmed
  • chromatin immunoprecipitation; human; fig 5
  • western blot; human; fig 5h
Lu F, Chen H, Kossenkov A, DeWispeleare K, Won K, Lieberman P. EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1. PLoS Pathog. 2016;12:e1005339 pubmed publisher
  • western blot; human; fig 1a,b
Yun J, Song S, Kang J, Park J, Kim H, Han S, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558-72 pubmed publisher
Stik G, Vidal E, Barrero M, Cuartero S, Vila Casadesús M, Mendieta Esteban J, et al. CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response. Nat Genet. 2020;52:655-661 pubmed publisher
Li Y, Liao Z, Luo H, Benyoucef A, Kang Y, Lai Q, et al. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Nucleic Acids Res. 2020;48:3119-3133 pubmed publisher
Li Y, Haarhuis J, Cacciatore Á, Oldenkamp R, van Ruiten M, Willems L, et al. The structural basis for cohesin-CTCF-anchored loops. Nature. 2020;: pubmed publisher
Wang W, Ren G, Hong N, Jin W. Exploring the changing landscape of cell-to-cell variation after CTCF knockdown via single cell RNA-seq. BMC Genomics. 2019;20:1015 pubmed publisher
Weiterer S, Meier Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, et al. Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J. 2019;:e101533 pubmed publisher
Holzmann J, Politi A, Nagasaka K, Hantsche Grininger M, Walther N, Koch B, et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. elife. 2019;8: pubmed publisher
Pan J, McKenzie Z, D Avino A, Mashtalir N, Lareau C, St Pierre R, et al. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat Genet. 2019;51:618-626 pubmed publisher
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature. 2018;560:661-665 pubmed publisher
Jain S, Ba Z, Zhang Y, Dai H, Alt F. CTCF-Binding Elements Mediate Accessibility of RAG Substrates During Chromatin Scanning. Cell. 2018;174:102-116.e14 pubmed publisher
Liu N, Hargreaves V, Zhu Q, Kurland J, Hong J, Kim W, et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. 2018;173:430-442.e17 pubmed publisher
Hall A, Battenhouse A, Shivram H, Morris A, Cowperthwaite M, Shpak M, et al. Bivalent Chromatin Domains in Glioblastoma Reveal a Subtype-Specific Signature of Glioma Stem Cells. Cancer Res. 2018;78:2463-2474 pubmed publisher
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe Mie Y, et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551:51-56 pubmed publisher
Gallagher M, Posavi M, Huang P, Unger T, Berlyand Y, Gruenewald A, et al. A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. Am J Hum Genet. 2017;101:643-663 pubmed publisher
Van Bortle K, Phanstiel D, Snyder M. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol. 2017;18:180 pubmed publisher
Huang P, Keller C, Giardine B, Grevet J, Davies J, Hughes J, et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 2017;31:1704-1713 pubmed publisher
Toth Z, Smindak R, Papp B. Inhibition of the lytic cycle of Kaposi's sarcoma-associated herpesvirus by cohesin factors following de novo infection. Virology. 2017;512:25-33 pubmed publisher
Hanssen L, Kassouf M, Oudelaar A, Biggs D, Preece C, Downes D, et al. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat Cell Biol. 2017;19:952-961 pubmed publisher
Martínez Ramírez I, Del Castillo Falconi V, Mitre Aguilar I, Amador Molina A, Carrillo García A, Langley E, et al. SOX2 as a New Regulator of HPV16 Transcription. Viruses. 2017;9: pubmed publisher
Jiang Y, Loh Y, Rajarajan P, Hirayama T, Liao W, Kassim B, et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet. 2017;49:1239-1250 pubmed publisher
Stolzenburg L, Yang R, Kerschner J, FOSSUM S, Xu M, Hoffmann A, et al. Regulatory dynamics of 11p13 suggest a role for EHF in modifying CF lung disease severity. Nucleic Acids Res. 2017;45:8773-8784 pubmed publisher
Shimamoto Y, Tamura S, Masumoto H, Maeshima K. Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Mol Biol Cell. 2017;28:1580-1589 pubmed publisher
Rawat P, Jalan M, Sadhu A, Kanaujia A, Srivastava M. Chromatin Domain Organization of the TCRb Locus and Its Perturbation by Ectopic CTCF Binding. Mol Cell Biol. 2017;37: pubmed publisher
Skene P, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. elife. 2017;6: pubmed publisher
Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed publisher
Miyazato P, Katsuya H, Fukuda A, Uchiyama Y, Matsuo M, Tokunaga M, et al. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci Rep. 2016;6:28324 pubmed publisher
Ayala Ortega E, Arzate Mejía R, Pérez Molina R, González Buendía E, Meier K, Guerrero G, et al. Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer. 2016;16:226 pubmed publisher
Yang R, Kerschner J, Gosalia N, Neems D, Gorsic L, Safi A, et al. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus. Nucleic Acids Res. 2016;44:3082-94 pubmed publisher
Lake R, Boetefuer E, Won K, Fan H. The CSB chromatin remodeler and CTCF architectural protein cooperate in response to oxidative stress. Nucleic Acids Res. 2016;44:2125-35 pubmed publisher
product information
Catalog Number :
07-729
Subcategory :
Epigenetics & Nuclear Function
Product Name :
Anti-CTCF Antibody
Product Type :
Antibodies
Clonality :
Polyclonal Antibody
Gene ID :
P49711
Host Name :
Rabbit
Antigen :
CTCF
Conjugate :
Serum
Product Description :
Anti-CTCF Antibody
Cross Reactivity :
Human;Rat;Canine;Mouse;Primate
Background :
CTCF is a ubiquitous 11 zinc finger (ZF) protein with highly versatile functions. A transcriptional repressor, CTCF, binds to promoters of vertebrate c-myc gene. It also binds to the PLK and PIM1 promoters. CTCF may prevent the access of transcriptional activators to enhancers. CTCF also acts as a transcriptional activator of APP. It is involved in different aspects of gene regulation including promoter activation or repression, hormone-responsive gene silencing, methylation-dependent chromatin insulation, and genomic imprinting. CTCF may also act as tumor suppressor. CTCF organizes epigenetically controlled chromatin insulators that regulate imprinted genes in soma.
ALT Names :
11 zinc finger transcriptional repressor;11-zinc finger protein;CCCTC-binding factor;CCCTC-binding factor (zinc finger protein);CTCFL paralog;transcriptional repressor CTCF
Immunogen :
KLH-conjugated, synthetic peptide corresponding to amino acids 659-675 (C-TNQPKQNQPTAIIQVED) of human CCCTC-binding factor (CTCF) with a N-terminal cysteine added for conjugation purposes.
Specificity :
Recognizes CTCF at a.a. 659-675.
Package Size :
200 µL
Uses :
Western Blotting;ChIP-seq;Chromatin Immunoprecipitation (ChIP)
Storage :
Stable for 1 year at -20°C from date of receipt. Handling Recommendations: Upon first thaw, and prior to removing the cap, centrifuge the vial and gently mix the solution. Aliquot into microcentrifuge tubes and store at -20°C. Avoid repeated freeze/thaw cycles, which may damage IgG and affect product performance. Note: Variability in freezer temperatures below -20°C may cause glycerol containing solutions to become frozen during storage.
company information
EMD Millipore
290 Concord Road
Billerica, Massachusetts 01821
bioscienceshelp@emdchemical.com
https://www.emdmillipore.com
888-854-3417
headquarters: United States
EMD Millipore is the Life Science division of Merck KGaA of Darmstadt, Germany

Hundreds of New Antibodies in the areas of:
  • • Cancer
  • • Nuclear Signaling
  • • Apoptosis
  • • Cardiovascular Disease
  • • Developmental Biology
  • • Metabolic Disease
  • • Neurodegenerative Disease
  • • Cell Biology
View all the new antibodies at www.emdmillipore.com.