product summary
company name :
Developmental Studies Hybridoma Bank
product type :
antibody
product name :
Pigment-dispersing factor neuropeptide
catalog :
PDF C7
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
PDF C7
reactivity :
Madeira cockroach, fruit fly
application :
immunohistochemistry, immunocytochemistry
citations: 52
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; fruit fly ; 1:10; loading ...; fig s6
Yin J, Spillman E, Cheng E, Short J, Chen Y, Lei J, et al. Brain-specific lipoprotein receptors interact with astrocyte derived apolipoprotein and mediate neuron-glia lipid shuttling. Nat Commun. 2021;12:2408 pubmed publisher
  • immunohistochemistry; fruit fly ; loading ...; fig 1c
Vita D, Meier C, Broadie K. Neuronal fragile X mental retardation protein activates glial insulin receptor mediated PDF-Tri neuron developmental clearance. Nat Commun. 2021;12:1160 pubmed publisher
  • immunocytochemistry; fruit fly ; 1:500; fig 1b
Ma D, Przybylski D, Abruzzi K, Schlichting M, Li Q, Long X, et al. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. elife. 2021;10: pubmed publisher
  • immunohistochemistry; fruit fly ; 1:1000; loading ...; fig 2c
Arnold T, Korek S, Massah A, Eschstruth D, Stengl M. Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. J Comp Neurol. 2020;528:1754-1774 pubmed publisher
  • immunohistochemistry; fruit fly ; 1:10; loading ...; fig 6s2
DELVENTHAL R, O Connor R, Pantalia M, Ulgherait M, Kim H, Basturk M, et al. Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. elife. 2019;8: pubmed publisher
  • immunohistochemistry; Madeira cockroach; 1:1000; loading ...; fig 7g
Arendt A, Baz E, Stengl M. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, Rhyparobia maderae. J Comp Neurol. 2017;525:1250-1272 pubmed publisher
  • immunohistochemistry; fruit fly ; 1:100; fig 6
Mabuchi I, Shimada N, Sato S, Ienaga K, Inami S, Sakai T. Mushroom body signaling is required for locomotor activity rhythms in Drosophila. Neurosci Res. 2016;111:25-33 pubmed publisher
Richhariya S, Shin D, Le J, Rosbash M. Dissecting neuron-specific functions of circadian genes using modified cell-specific CRISPR approaches. Proc Natl Acad Sci U S A. 2023;120:e2303779120 pubmed publisher
Song B, Sharp S, Rogulja D. Daily rewiring of a neural circuit generates a predictive model of environmental light. Sci Adv. 2021;7: pubmed publisher
Chen W, Xue Y, Scarfe L, Wang D, Zhang Y. Loss of Prune in Circadian Cells Decreases the Amplitude of the Circadian Locomotor Rhythm in Drosophila. Front Cell Neurosci. 2019;13:76 pubmed publisher
Curran J, Buhl E, Tsaneva Atanasova K, Hodge J. Age-dependent changes in clock neuron structural plasticity and excitability are associated with a decrease in circadian output behavior and sleep. Neurobiol Aging. 2019;77:158-168 pubmed publisher
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, et al. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell. 2018;174:982-998.e20 pubmed publisher
Younan N, Chen K, Rose R, Crowther D, Viles J. Prion protein stabilizes amyloid-β (Aβ) oligomers and enhances Aβ neurotoxicity in a Drosophila model of Alzheimer's disease. J Biol Chem. 2018;293:13090-13099 pubmed publisher
Bai L, Lee Y, Hsu C, Williams J, Cavanaugh D, Zheng X, et al. A Conserved Circadian Function for the Neurofibromatosis 1 Gene. Cell Rep. 2018;22:3416-3426 pubmed publisher
Li Q, Li Y, Wang X, Qi J, Jin X, Tong H, et al. Fbxl4 Serves as a Clock Output Molecule that Regulates Sleep through Promotion of Rhythmic Degradation of the GABAA Receptor. Curr Biol. 2017;27:3616-3625.e5 pubmed publisher
Lee J, Yoo E, Lee H, Park K, Hur J, Lim C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol Cell. 2017;66:129-140.e7 pubmed publisher
Barekat A, Gonzalez A, Mauntz R, Kotzebue R, Molina B, El Mecharrafie N, et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci Rep. 2016;6:25252 pubmed publisher
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol. 2016;524:1337-60 pubmed publisher
Lee Y, Jang A, Francey L, Sehgal A, Hogenesch J. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function. elife. 2015;4: pubmed publisher
Means J, Venkatesan A, Gerdes B, Fan J, Bjes E, Price J. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy. PLoS Genet. 2015;11:e1005171 pubmed publisher
Jang A, Moravcevic K, Saez L, Young M, Sehgal A. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus. PLoS Genet. 2015;11:e1004974 pubmed publisher
Collins B, Kaplan H, Cavey M, Lelito K, Bahle A, Zhu Z, et al. Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol. 2014;12:e1001959 pubmed publisher
Dissel S, Hansen C, Özkaya Ã, Hemsley M, Kyriacou C, Rosato E. The logic of circadian organization in Drosophila. Curr Biol. 2014;24:2257-66 pubmed publisher
Muthukumar A, Stork T, Freeman M. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat Neurosci. 2014;17:1340-50 pubmed publisher
Hermann Luibl C, Yoshii T, Senthilan P, Dircksen H, Helfrich Forster C. The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. J Neurosci. 2014;34:9522-36 pubmed publisher
Zheng X, Sowcik M, Chen D, Sehgal A. Casein kinase 1 promotes synchrony of the circadian clock network. Mol Cell Biol. 2014;34:2682-94 pubmed
Cavanaugh D, Geratowski J, Wooltorton J, Spaethling J, Hector C, Zheng X, et al. Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell. 2014;157:689-701 pubmed publisher
Seluzicki A, Flourakis M, Kula Eversole E, Zhang L, Kilman V, Allada R. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior. PLoS Biol. 2014;12:e1001810 pubmed publisher
Chen K, Possidente B, Lomas D, Crowther D. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease. Dis Model Mech. 2014;7:445-58 pubmed publisher
Linneweber G, Jacobson J, Busch K, Hudry B, Christov C, Dormann D, et al. Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching. Cell. 2014;156:69-83 pubmed publisher
Luo J, Liu Y, Nassel D. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila. PLoS Genet. 2013;9:e1004052 pubmed publisher
Hanafusa S, Kawaguchi T, Umezaki Y, Tomioka K, Yoshii T. Sexual interactions influence the molecular oscillations in DN1 pacemaker neurons in Drosophila melanogaster. PLoS ONE. 2013;8:e84495 pubmed publisher
Gmeiner F, Kołodziejczyk A, Yoshii T, Rieger D, Nassel D, Helfrich Forster C. GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. J Exp Biol. 2013;216:3837-43 pubmed publisher
Kane E, Gershow M, Afonso B, Larderet I, Klein M, Carter A, et al. Sensorimotor structure of Drosophila larva phototaxis. Proc Natl Acad Sci U S A. 2013;110:E3868-77 pubmed publisher
Mason R, Casu M, Butler N, Breda C, Campesan S, Clapp J, et al. Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nat Genet. 2013;45:1249-54 pubmed publisher
Sivachenko A, Li Y, Abruzzi K, Rosbash M. The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron. 2013;79:281-92 pubmed publisher
Kauranen H, Menegazzi P, Costa R, Helfrich Forster C, Kankainen A, Hoikkala A. Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana. J Biol Rhythms. 2012;27:377-87 pubmed
Grima B, Dognon A, Lamouroux A, Chélot E, Rouyer F. CULLIN-3 controls TIMELESS oscillations in the Drosophila circadian clock. PLoS Biol. 2012;10:e1001367 pubmed publisher
Zoephel J, Reiher W, Rexer K, Kahnt J, Wegener C. Peptidomics of the agriculturally damaging larval stage of the cabbage root fly Delia radicum (Diptera: Anthomyiidae). PLoS ONE. 2012;7:e41543 pubmed publisher
Hermann C, Saccon R, Senthilan P, Domnik L, Dircksen H, Yoshii T, et al. The circadian clock network in the brain of different Drosophila species. J Comp Neurol. 2013;521:367-88 pubmed publisher
Sundram V, Ng F, Roberts M, Millán C, Ewer J, Jackson F. Cellular requirements for LARK in the Drosophila circadian system. J Biol Rhythms. 2012;27:183-95 pubmed publisher
Kim E, Jeong E, Park S, Jeong H, Edery I, Cho J. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 2012;26:490-502 pubmed publisher
Luo W, Sehgal A. Regulation of circadian behavioral output via a MicroRNA-JAK/STAT circuit. Cell. 2012;148:765-79 pubmed publisher
Luo W, Chen W, Yue Z, Chen D, Sowcik M, Sehgal A, et al. Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell. 2012;11:428-38 pubmed publisher
Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, et al. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol. 2012;520:1078-97 pubmed publisher
Depetris Chauvin A, Berni J, Aranovich E, Muraro N, Beckwith E, Ceriani M. Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Curr Biol. 2011;21:1783-93 pubmed publisher
Sprecher S, Cardona A, Hartenstein V. The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil. Dev Biol. 2011;358:33-43 pubmed publisher
Goda T, Mirowska K, Currie J, Kim M, Rao N, Bonilla G, et al. Adult circadian behavior in Drosophila requires developmental expression of cycle, but not period. PLoS Genet. 2011;7:e1002167 pubmed publisher
McCarthy E, Wu Y, Decarvalho T, Brandt C, Cao G, Nitabach M. Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci. 2011;31:8181-93 pubmed publisher
Keene A, Mazzoni E, Zhen J, Younger M, Yamaguchi S, Blau J, et al. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment. J Neurosci. 2011;31:6527-34 pubmed publisher
Soehler S, Stengl M, Reischig T. Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res. 2011;343:559-77 pubmed publisher
Cyran S, Yiannoulos G, Buchsbaum A, Saez L, Young M, Blau J. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci. 2005;25:5430-7 pubmed
product information
Internal ID :
1310
Name :
PDF C7
Depositor Name :
Blau, Justin
Depositor Institution :
Biology, New York University
Date Deposited :
11/10/06
Allow Hybridoma Distribution :
Yes
Cells Available (legacy) :
Yes
Antigen :
Pigment-dispersing factor neuropeptide
Antigen Species :
Drosophila
Host Species :
mouse
Isotype :
MIgG2b, kappa light chain
Isotype for catalog (legacy) :
IgG2b, kappa light chain
Positive Tested Species Reactivity :
Cabbage root fly,Cockroach,Drosophila
Species Tested (legacy) :
Drosophila
Initial Publication Pubmed ID :
15930393
Depositor Notes (Special Instructions) :
Fusion date: 2005. Recognizes Drosophila larval and adult brains.
Collections :
Cell markers,Cell signaling,Drosophila antigens,Enzymes,Neurodevelopment
Search Keywords :
Blau, Justin, Pigment-dispersing factor neuropeptide, Drosophila, MIgG2b, kappa light chain, Drosophila/Cockroach/Cabbage root fly, Pdf, Dmel CG6496; Drm-pdf; Drm-PDF; PAP; cPDH; PDH, AB_760350 AB_2315084, monoclonal, Drosophila antigens/Neurodevelopment/Cell markers/Cell signaling, Immunohistochemistry/Immunofluorescence
Antigen Molecular Weight :
Predicted: PDF, 2kDa; PDF precursor, 11.5kDa
Gene :
Pdf
Alternate Gene Name(s) :
Dmel CG6496; Drm-pdf; Drm-PDF; PAP; cPDH; PDH
Uniprot ID :
O96690
Antibody Registry ID :
AB_760350 AB_2315084
Immunogen :
amidated pigment dispersing factor neuropeptide
Immunogen Sequence :
NSELINSLLSLPKNMNDA-NH2
Clonality :
Monoclonal
Myeloma Strain :
SP2-0/Ag14
Epitope Mapped :
Yes
Epitope Location or Sequence :
NSELINSLLSLPKNMNDA-NH2
Epitope Map PubMed ID :
15930393
Recommended Applications :
Immunofluorescence,Immunohistochemistry
Immunohistochemistry Pubmed IDs :
23974869 27106579 26440142
Immunofluorescence Pubmed IDs :
25268747 24766812 24643294 25151265 25031396 25220056 24820422 24574361 22095637 22018542 21229364 21525293 23010660 24068350 22736465 22879814 21750685 22848525 24043822 21632940 22327476 25951229 21781960 27143646 29174887 26440142
Pubmed IDs :
23889933 24385933 22305007 22653887 24367668 15930393
Additional Information :
The neuropeptide PDF represents the C-terminus portion (aa 83-100) of the Protein PDF [Uniprot O96690]. The neuropeptide PDF regulates circadian loco motor rhythms.
DSHB Growth Medium :
Iscove's
References (legacy) :
J. Neurosci. 25(22), 5430-5437.; Genes Dev. 26, 490-502.; J. Comp. Neurol. 521, 367-388.
company information
Developmental Studies Hybridoma Bank
University of Iowa
http://dshb.biology.uiowa.edu
headquarters: US