product summary
company name :
Developmental Studies Hybridoma Bank
product type :
antibody
product name :
myosin (embryonic)
catalog :
F1.652
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
F1.652
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - paraffin section, immunohistochemistry - frozen section
citations: 120
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry; mouse; loading ...
Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:100; loading ...; fig 2h
Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 1c
  • western blot; mouse; loading ...; fig 1e
Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig 1a
Arnold L, Cecchini A, Stark D, Ihnat J, Craigg R, Carter A, et al. EphA7 promotes myogenic differentiation via cell-cell contact. elife. 2020;9: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 2 ug/ml; loading ...; fig s4b
Pereira J, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, et al. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet. 2020;29:1253-1273 pubmed publisher
  • western blot; human; 1:200; loading ...; fig 7d
Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 3d
Jia Z, Nie Y, Yue F, Kong Y, Gu L, Gavin T, et al. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration. elife. 2019;8: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:150; loading ...; fig 4a
  • western blot; mouse; 1:500; loading ...; fig 4f
Gallot Y, Straughn A, Bohnert K, Xiong G, Hindi S, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet. 2018;27:3449-3463 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 4c
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi Y, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle. 2017;7:23 pubmed publisher
  • immunohistochemistry; mouse; 1:10; fig 5e
Ho A, Palla A, Blake M, Yucel N, Wang Y, Magnusson K, et al. Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci U S A. 2017;114:6675-6684 pubmed publisher
  • immunohistochemistry - frozen section; human; loading ...; fig 8
Mackey A, Magnan M, Chazaud B, Kjaer M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol. 2017;595:5115-5127 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 3a
  • western blot; mouse; 1:1000; loading ...; fig 3h
Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:10; loading ...; fig 5d
Gawlik K, Holmberg J, Svensson M, Einerborg M, Oliveira B, Deierborg T, et al. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep. 2017;7:44059 pubmed publisher
  • immunocytochemistry; mouse; loading ...; fig 1i
Doe J, Kaindl A, Jijiwa M, de la Vega M, Hu H, Griffiths G, et al. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Hum Mol Genet. 2017;26:1458-1464 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 5D
Nie Y, Chen H, Guo C, Yuan Z, Zhou X, Zhang Y, et al. Palmdelphin promotes myoblast differentiation and muscle regeneration. Sci Rep. 2017;7:41608 pubmed publisher
  • immunohistochemistry; mouse; 1:400; fig 6
Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed publisher
  • immunohistochemistry; mouse; 1:20; loading ...; fig 1i
Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed publisher
  • immunohistochemistry; mouse; 1:200; loading ...; fig 4e
Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 4
Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; fig 3
Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 4
Stewart M, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, et al. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech. 2016;9:347-59 pubmed publisher
  • immunohistochemistry; mouse; fig 4
Foltz S, Modi J, Melick G, Abousaud M, Luan J, Fortunato M, et al. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS ONE. 2016;11:e0147049 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:250; fig 2
  • western blot; mouse; 1:1000; fig 2
Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:20; fig 1
Filareto A, Rinaldi F, Arpke R, Darabi R, Belanto J, Toso E, et al. Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skelet Muscle. 2015;5:36 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed publisher
  • western blot; human; fig 1
Bollinger L, Powell J, Houmard J, Witczak C, Brault J. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux. Obesity (Silver Spring). 2015;23:1185-93 pubmed publisher
  • immunohistochemistry; mouse; fig 4
Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  • immunohistochemistry; mouse; 1:25; fig 1
Marshall J, Oh J, Chou E, Lee J, Holmberg J, Burkin D, et al. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet. 2015;24:2011-22 pubmed publisher
  • immunocytochemistry; mouse; 1:20
Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza A, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS ONE. 2014;9:e114018 pubmed publisher
  • immunohistochemistry; human; fig 5
Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  • western blot; rat; 1:200
Ye F, McCoy S, Ross H, Bernardo J, Beharry A, Senf S, et al. Transcriptional regulation of myotrophic actions by testosterone and trenbolone on androgen-responsive muscle. Steroids. 2014;87:59-66 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed publisher
  • western blot; mouse
Hoshino S, Sakamoto K, Vassilopoulos S, Camus S, Griffin C, Esk C, et al. The CHC22 clathrin-GLUT4 transport pathway contributes to skeletal muscle regeneration. PLoS ONE. 2013;8:e77787 pubmed publisher
  • immunocytochemistry; mouse; fig 3
  • western blot; mouse; fig s2
Simionescu Bankston A, Leoni G, Wang Y, Pham P, Ramalingam A, DuHadaway J, et al. The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol. 2013;382:160-71 pubmed publisher
  • immunohistochemistry; human; 1:100
Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed publisher
Wang C, Rabadan Ros R, Martínez Redondo P, Ma Z, Shi L, Xue Y, et al. In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat Commun. 2021;12:3094 pubmed publisher
Yin Z, Lin J, Yan R, Liu R, Liu M, Zhou B, et al. Atlas of Musculoskeletal Stem Cells with the Soft and Hard Tissue Differentiation Architecture. Adv Sci (Weinh). 2020;7:2000938 pubmed publisher
Brett J, Arjona M, Ikeda M, Quarta M, de Morrée A, Egner I, et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1. Nat Metab. 2020;2:307-317 pubmed publisher
Mehdipour M, Skinner C, Wong N, Lieb M, Liu C, Etienne J, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12:8790-8819 pubmed publisher
Bronisz Budzynska I, Chwalenia K, Mucha O, Podkalicka P, Karolina Bukowska Strakova -, Jozkowicz A, et al. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle. 2019;9:22 pubmed publisher
Su Y, Yu Y, Liu C, Zhang Y, Liu C, Ge M, et al. Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death Differ. 2019;: pubmed publisher
Soendenbroe C, Heisterberg M, Schjerling P, Karlsen A, Kjaer M, Andersen J, et al. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve. 2019;60:453-463 pubmed publisher
Sala D, Cunningham T, Stec M, Etxaniz U, Nicoletti C, Dall Agnese A, et al. The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration. Nat Commun. 2019;10:1796 pubmed publisher
Wang Y, Feige P, Brun C, Hekmatnejad B, Dumont N, Renaud J, et al. EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell. 2019;24:419-432.e6 pubmed publisher
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep. 2019;26:689-701.e6 pubmed publisher
Lindsay A, Larson A, Verma M, Ervasti J, Lowe D. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol (1985). 2019;126:363-375 pubmed publisher
Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2018;: pubmed publisher
Schaaf G, van Gestel T, In t Groen S, de Jong B, Boomaars B, Tarallo A, et al. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathol Commun. 2018;6:119 pubmed publisher
Mademtzoglou D, Asakura Y, Borok M, Alonso Martin S, Mourikis P, Kodaka Y, et al. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. elife. 2018;7: pubmed publisher
Estrellas K, Chung L, Cheu L, Sadtler K, Majumdar S, Mula J, et al. Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. J Biol Chem. 2018;293:15594-15605 pubmed publisher
Pala F, Di Girolamo D, Mella S, Yennek S, Chatre L, Ricchetti M, et al. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J Cell Sci. 2018;131: pubmed publisher
Chan S, Arpke R, Filareto A, Xie N, Pappas M, Penaloza J, et al. Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell. 2018;23:74-85.e6 pubmed publisher
Pilichi S, Rocca S, Dattena M, Pool R, Mara L, Sanna D, et al. Sheep embryonic stem-like cells engrafted into sheep femoral condyle osteochondral defects: 4-year follow-up. BMC Vet Res. 2018;14:213 pubmed publisher
Phillips B, Banerjee A, Sanchez B, Di Marco S, Gallouzi I, Pavlath G, et al. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR. Nucleic Acids Res. 2018;46:7643-7661 pubmed publisher
Deyhle M, Hafen P, Parmley J, Preece C, Robison M, Sorensen J, et al. CXCL10 increases in human skeletal muscle following damage but is not necessary for muscle regeneration. Physiol Rep. 2018;6:e13689 pubmed publisher
Xie L, Yin A, Nichenko A, Beedle A, Call J, Yin H. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration. J Clin Invest. 2018;128:2339-2355 pubmed publisher
Sánchez L, Beltran E, De Stefani A, Guo L, Shea A, Shelton G, et al. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs. PLoS ONE. 2018;13:e0193372 pubmed publisher
Judson R, Quarta M, Oudhoff M, Soliman H, Yi L, Chang C, et al. Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell. 2018;22:177-190.e7 pubmed publisher
Akiyama T, Sato S, Chikazawa Nohtomi N, Soma A, Kimura H, Wakabayashi S, et al. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Sci Rep. 2018;8:1189 pubmed publisher
DE Perini A, Dimauro I, Duranti G, Fantini C, Mercatelli N, Ceci R, et al. The p75NTR-mediated effect of nerve growth factor in L6C5 myogenic cells. BMC Res Notes. 2017;10:686 pubmed publisher
Jiwlawat S, Lynch E, Glaser J, Smit Oistad I, Jeffrey J, van Dyke J, et al. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation. 2017;96:70-81 pubmed publisher
Finnerty C, McKenna C, Cambias L, Brightwell C, Prasai A, Wang Y, et al. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury. J Physiol. 2017;595:6687-6701 pubmed publisher
Luo D, de Morrée A, Boutet S, Quach N, Natu V, Rustagi A, et al. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c. Proc Natl Acad Sci U S A. 2017;114:E3071-E3080 pubmed publisher
Wu C, Satomi Y, Walsh K. RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC Genomics. 2017;18:181 pubmed publisher
Fiacco E, Castagnetti F, Bianconi V, Madaro L, De Bardi M, Nazio F, et al. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ. 2016;23:1839-1849 pubmed publisher
Gattazzo F, Molon S, Morbidoni V, Braghetta P, Blaauw B, Urciuolo A, et al. Cyclosporin A Promotes in vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice. Front Aging Neurosci. 2014;6:244 pubmed publisher
Farup J, Rahbek S, Riis S, Vendelbo M, Paoli F, Vissing K. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol (1985). 2014;117:898-909 pubmed publisher
Holmberg J, Alajbegovic A, Gawlik K, Elowsson L, Durbeej M. Laminin ?2 Chain-Deficiency is Associated with microRNA Deregulation in Skeletal Muscle and Plasma. Front Aging Neurosci. 2014;6:155 pubmed publisher
Farup J, Rahbek S, Knudsen I, de Paoli F, Mackey A, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids. 2014;46:2503-16 pubmed publisher
Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep. 2014;4:5635 pubmed publisher
Elabd C, Cousin W, Upadhyayula P, Chen R, Chooljian M, Li J, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun. 2014;5:4082 pubmed publisher
Ljubicic V, Burt M, Lunde J, Jasmin B. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1? axis. Am J Physiol Cell Physiol. 2014;307:C66-82 pubmed publisher
Guo X, Greene K, Akanda N, Smith A, Stancescu M, Lambert S, et al. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. Biomater Sci. 2014;2:131-138 pubmed
Gawlik K, Holmberg J, Durbeej M. Loss of dystrophin and ?-sarcoglycan significantly exacerbates the phenotype of laminin ?2 chain-deficient animals. Am J Pathol. 2014;184:740-52 pubmed publisher
Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T, et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol. 2014;50:1-8 pubmed publisher
Webster M, Fan C. c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS ONE. 2013;8:e81757 pubmed publisher
Foletta V, Brown E, Cho Y, Snow R, Kralli A, Russell A. Ndrg2 is a PGC-1?/ERR? target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes. Biochim Biophys Acta. 2013;1833:3112-3123 pubmed publisher
Robinson K, Mendonca J, Militar J, Theroux M, Dabney K, Shah S, et al. Disruption of basal lamina components in neuromotor synapses of children with spastic quadriplegic cerebral palsy. PLoS ONE. 2013;8:e70288 pubmed publisher
Tonami K, Hata S, Ojima K, Ono Y, Kurihara Y, Amano T, et al. Calpain-6 deficiency promotes skeletal muscle development and regeneration. PLoS Genet. 2013;9:e1003668 pubmed publisher
Ieronimakis N, Pantoja M, Hays A, Dosey T, Qi J, Fischer K, et al. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet Muscle. 2013;3:20 pubmed publisher
Niu A, Wen Y, Liu H, Zhan M, Jin B, Li Y. Src mediates the mechanical activation of myogenesis by activating TNF?-converting enzyme. J Cell Sci. 2013;126:4349-57 pubmed publisher
Luo Q, Douglas M, BURKHOLDER T, Sokoloff A. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve. 2014;49:534-44 pubmed publisher
Schneider J, Shanmugam M, Gonzalez J, Lopez H, Gordan R, Fraidenraich D, et al. Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J Muscle Res Cell Motil. 2013;34:349-56 pubmed publisher
Zhang Y, Davis C, Sakellariou G, Shi Y, Kayani A, Pulliam D, et al. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB J. 2013;27:3536-48 pubmed publisher
Niu K, Guo H, Guo Y, Ebihara S, Asada M, Ohrui T, et al. Royal jelly prevents the progression of sarcopenia in aged mice in vivo and in vitro. J Gerontol A Biol Sci Med Sci. 2013;68:1482-92 pubmed publisher
García Parra P, Naldaiz Gastesi N, Maroto M, Padín J, Goicoechea M, Aiastui A, et al. Murine muscle engineered from dermal precursors: an in vitro model for skeletal muscle generation, degeneration, and fatty infiltration. Tissue Eng Part C Methods. 2014;20:28-41 pubmed publisher
Charrin S, Latil M, Soave S, Polesskaya A, Chretien F, Boucheix C, et al. Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun. 2013;4:1674 pubmed publisher
Diaz Ramos A, Roig Borrellas A, García Melero A, Llorens A, Lopez Alemany R. Requirement of plasminogen binding to its cell-surface receptor ?-enolase for efficient regeneration of normal and dystrophic skeletal muscle. PLoS ONE. 2012;7:e50477 pubmed publisher
Takahashi M, Tajika Y, Khairani A, Ueno H, Murakami T, Yorifuji H. The localization of VAMP5 in skeletal and cardiac muscle. Histochem Cell Biol. 2013;139:573-82 pubmed publisher
Moncman C, Andrade M, McCool A, McMullen C, Andrade F. Development transitions of thin filament proteins in rat extraocular muscles. Exp Cell Res. 2013;319:23-31 pubmed publisher
Pandey S, Cabotage J, Shi R, Dixit M, Sutherland M, Liu J, et al. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biol Open. 2012;1:629-639 pubmed
Marshall J, Chou E, Oh J, Kwok A, Burkin D, Crosbie Watson R. Dystrophin and utrophin expression require sarcospan: loss of ?7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice. Hum Mol Genet. 2012;21:4378-93 pubmed
Marshall J, Holmberg J, Chou E, Ocampo A, Oh J, Lee J, et al. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol. 2012;197:1009-27 pubmed publisher
Jo J, Song H, Park S, Lee S, Ko J, Park J, et al. Regulation of differentiation potential of human mesenchymal stem cells by intracytoplasmic delivery of coactivator-associated arginine methyltransferase 1 protein using cell-penetrating peptide. Stem Cells. 2012;30:1703-13 pubmed publisher
Joanne P, Hourde C, Ochala J, Caudéran Y, Medja F, Vignaud A, et al. Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle. PLoS ONE. 2012;7:e35346 pubmed publisher
Perdiguero E, Sousa Victor P, Ruiz Bonilla V, Jardi M, Caelles C, Serrano A, et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol. 2011;195:307-22 pubmed publisher
Krause M, Moradi J, Nissar A, Riddell M, Hawke T. Inhibition of plasminogen activator inhibitor-1 restores skeletal muscle regeneration in untreated type 1 diabetic mice. Diabetes. 2011;60:1964-72 pubmed publisher
Madaro L, Marrocco V, Fiore P, Aulino P, Smeriglio P, Adamo S, et al. PKC? signaling is required for myoblast fusion by regulating the expression of caveolin-3 and ?1D integrin upstream focal adhesion kinase. Mol Biol Cell. 2011;22:1409-19 pubmed publisher
Campos Y, Qiu X, Zanoteli E, Moshiach S, Vergani N, Bongiovanni A, et al. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development. PLoS ONE. 2010;5:e9866 pubmed publisher
Delaunay A, Bromberg K, Hayashi Y, Mirabella M, Burch D, Kirkwood B, et al. The ER-bound RING finger protein 5 (RNF5/RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS ONE. 2008;3:e1609 pubmed publisher
Biondi O, Grondard C, Lecolle S, Deforges S, Pariset C, Lopes P, et al. Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse. J Neurosci. 2008;28:953-62 pubmed publisher
Sokoloff A, Li H, Burkholder T. Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve. 2007;36:183-9 pubmed
Ojima K, Ono Y, Doi N, Yoshioka K, Kawabata Y, Labeit S, et al. Myogenic stage, sarcomere length, and protease activity modulate localization of muscle-specific calpain. J Biol Chem. 2007;282:14493-504 pubmed
Duquet A, Polesskaya A, Cuvellier S, Ait Si Ali S, Héry P, Pritchard L, et al. Acetylation is important for MyoD function in adult mice. EMBO Rep. 2006;7:1140-6 pubmed
Jansen K, Pavlath G. Mannose receptor regulates myoblast motility and muscle growth. J Cell Biol. 2006;174:403-13 pubmed
Nagata Y, Partridge T, Matsuda R, Zammit P. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol. 2006;174:245-53 pubmed
Strle K, Broussard S, McCusker R, Shen W, LeCleir J, Johnson R, et al. C-jun N-terminal kinase mediates tumor necrosis factor-alpha suppression of differentiation in myoblasts. Endocrinology. 2006;147:4363-73 pubmed
Rodgers B. Insulin-like growth factor-I downregulates embryonic myosin heavy chain (eMyHC) in myoblast nuclei. Growth Horm IGF Res. 2005;15:377-83 pubmed
Coletti D, Moresi V, Adamo S, Molinaro M, Sassoon D. Tumor necrosis factor-alpha gene transfer induces cachexia and inhibits muscle regeneration. Genesis. 2005;43:120-8 pubmed
Pizza F, Peterson J, Baas J, Koh T. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol. 2005;562:899-913 pubmed
De Arcangelis V, Coletti D, Canato M, Molinaro M, Adamo S, Reggiani C, et al. Hypertrophy and transcriptional regulation induced in myogenic cell line L6-C5 by an increase of extracellular calcium. J Cell Physiol. 2005;202:787-95 pubmed
Broussard S, McCusker R, Novakofski J, Strle K, Shen W, Johnson R, et al. IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts. J Immunol. 2004;172:7713-20 pubmed
Towler M, Gleeson P, Hoshino S, Rahkila P, Manalo V, Ohkoshi N, et al. Clathrin isoform CHC22, a component of neuromuscular and myotendinous junctions, binds sorting nexin 5 and has increased expression during myogenesis and muscle regeneration. Mol Biol Cell. 2004;15:3181-95 pubmed
Horsley V, Pavlath G. Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol. 2003;161:111-8 pubmed
Lindman R, Stål P. Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing. J Neurol Sci. 2002;195:11-23 pubmed
Furling D, Lemieux D, Taneja K, Puymirat J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul Disord. 2001;11:728-35 pubmed
Torgan C, Daniels M. Regulation of myosin heavy chain expression during rat skeletal muscle development in vitro. Mol Biol Cell. 2001;12:1499-508 pubmed
Horsley V, Friday B, Matteson S, Kegley K, Gephart J, Pavlath G. Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol. 2001;153:329-38 pubmed
Cho M, Webster S, Blau H. Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development. J Cell Biol. 1993;121:795-810 pubmed
Webster C, Silberstein L, Hays A, Blau H. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52:503-13 pubmed
product information
Internal ID :
1286
Name :
F1.652
Depositor Name :
Blau, H.M.
Depositor Institution :
Baxter Lab for Stem Cell Biology, Stanford University
Date Deposited :
8/25/93
Allow Hybridoma Distribution :
Yes
Cells Available (legacy) :
Yes
Antigen :
myosin (embryonic)
Antigen Species :
Human
Host Species :
mouse
Isotype :
MIgG1
Isotype for catalog (legacy) :
IgG1
Positive Tested Species Reactivity :
Guinea Pig,Human,Mouse,Rat,Rodent
Species Tested (legacy) :
human, rodent (others?)
Initial Publication Pubmed ID :
3342447
Collections :
Cytoskeleton,Human,Muscular dystrophy,Skeletal muscle,Stem cell
Search Keywords :
Blau, Helen M., myosin (embryonic), Human, MIgG1, Human/Rodent/Mouse/Rat/Guinea Pig, MYH3, HEMHC; SMHCE; MYHSE1; MYHC-EMB, AB_528358, monoclonal, Cytoskeletal elements/Human/Muscular dystrophy/Skeletal muscle/Stem cell, Immunohistochemistry/Immunofluorescence/Western Blot/FFPE
Antigen Molecular Weight :
Predicted 224kDa; Apparent: 200, 222 or 250kDa
Gene :
MYH3
Alternate Gene Name(s) :
HEMHC; SMHCE; MYHSE1; MYHC-EMB
Uniprot ID :
P11055
Antibody Registry ID :
AB_528358
Immunogen :
partially purified (pyrophosphate extracted) fetal human myosin (15 weeks gestation)
Immunogen Sequence :
Total protein
Clonality :
Monoclonal
Myeloma Strain :
SP2/2
Epitope Mapped :
No
Recommended Applications :
FFPE,Immunofluorescence,Immunohistochemistry,Western Blot
Immunoblotting (legacy) :
Yes
Immunohistochemistry Pubmed IDs :
23835800 24522534 23868980 23915702 23125914 21987635 11867069 15550464 31314910 31412923
Immunofluorescence Pubmed IDs :
24516722 25071564 25063205 25103976 25309428 24269808 25005781 25461598 24393714 24915299 24760981 3342447 23840556 23174654 23729587 23657970 23575678 24260586 23748997 23915702 23180306 21346196 22696466 22734004 22798625 17028574 15133132 18270596 8491773 11359938 18216203 27447110 30580997 30571283 31332295 31412923
Western Blot Pubmed IDs :
23835800 23935533 23631552 23976945 21346196 24008097 16169763 11595515 17028574 15187154 17371879 16777978 8491773 16158413 15389566 31332295
FFPE Pubmed IDs :
15550464
Additional Information :
Embryonic myosin is a marker of newly forming fibers. F1.652 is useful to assess muscle regeneration/remodeling.
DSHB Growth Medium :
Iscove's
References (legacy) :
Cell 52, 503-513.; Cell 68, 659-671.; J. Cell Biol. 121, 795-810.; Dev. Biol. 158, 183-199.; Invest. Ophthalmol. Vis. Sci. 41(7), 1608-1616.; J. Anat. 197, 275-290.; Cleft Palate-Craniofacial J. 38(5), 438-448.; Mol. Biol. Cell 12, 1499-1508.; J. Neurol. Sci. 195, 11-23.; J. Physiol. 562.3, 899-913.; Genesis 43, 120-128.; J. Cell. Physiol. 202, 787-795.; Muscle Nerve 36, 183-189.; J. Neurosci. 28(4), 953-962.; Tiss. Eng. 20(1), doi:10.1089/ten.tec.2013.0146.; Faseb J. 27(9), 3536-3548.
company information
Developmental Studies Hybridoma Bank
University of Iowa
http://dshb.biology.uiowa.edu
headquarters: US