product summary
company name :
Developmental Studies Hybridoma Bank
product type :
antibody
product name :
Myosin Heavy Chain Type IIB
catalog :
BF-F3
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
BF-F3
reactivity :
human, mouse, rat, bovine, swine
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunohistochemistry - frozen section
citations: 79
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 3f
Owen A, Patel S, Smith J, Balasuriya B, Mori S, Hawk G, et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. elife. 2019;8: pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:100; loading ...; fig 4b
Bergmeister K, Aman M, Muceli S, Vujaklija I, Manzano Szalai K, Unger E, et al. Peripheral nerve transfers change target muscle structure and function. Sci Adv. 2019;5:eaau2956 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 4a
Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig s3a
Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun. 2018;9:4849 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 3c
Honda M, Hidaka K, Fukada S, Sugawa R, Shirai M, Ikawa M, et al. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep. 2017;7:7168 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 3b
  • western blot; mouse; loading ...; fig 3c
Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig 1g
Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 3b
Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 3c
Morrow R, Picard M, Derbeneva O, Leipzig J, McManus M, Gouspillou G, et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A. 2017;114:2705-2710 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 1f
Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 3
Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed publisher
  • immunohistochemistry; mouse; 1:10; loading ...; fig 5a
Hogarth M, Houweling P, Thomas K, Gordish Dressman H, Bello L, Pegoraro E, et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143 pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:200; fig 1
Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 2g
Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 4a
Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  • immunohistochemistry; mouse; 1:100; fig s6
Moretti I, Ciciliot S, Dyar K, Abraham R, Murgia M, Agatea L, et al. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun. 2016;7:12397 pubmed publisher
  • immunohistochemistry; rat; 1:100; loading ...; fig 1d
Rui Y, Pan F, Mi J. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles. Anat Rec (Hoboken). 2016;299:1397-401 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 5
  • immunohistochemistry - frozen section; human; fig 5
Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed publisher
  • immunohistochemistry; mouse; fig 2
Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed publisher
  • immunohistochemistry - frozen section; rat; loading ...
Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8:712-29 pubmed publisher
  • immunohistochemistry; mouse; fig 1
Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed publisher
  • immunohistochemistry; mouse; fig s5
Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 3
Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 5
Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed publisher
  • immunocytochemistry; mouse
Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed publisher
  • immunohistochemistry - frozen section; swine; 1:10
Clark D, Clark D, Beever J, Dilger A. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass. J Anim Sci. 2015;93:2546-58 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 2
Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:100
Fry C, Lee J, Mula J, Kirby T, Jackson J, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76-80 pubmed publisher
  • immunohistochemistry; rat; 1:40
Mori T, Agata N, Itoh Y, Miyazu Inoue M, Sokabe M, Taguchi T, et al. Stretch speed-dependent myofiber damage and functional deficits in rat skeletal muscle induced by lengthening contraction. Physiol Rep. 2014;2: pubmed publisher
  • immunohistochemistry; rat; 1:200
  • immunohistochemistry; mouse; 1:200
Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed publisher
  • immunohistochemistry; mouse; fig 3
Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. ?-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet. 2014;23:1879-93 pubmed publisher
  • immunohistochemistry - frozen section; mouse
Barton E, Park S, James J, Makarewich C, Philippou A, Eletto D, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J. 2012;26:3691-702 pubmed publisher
Hunt L, Stover J, Haugen B, Shaw T, Li Y, Pagala V, et al. A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Rep. 2019;28:1268-1281.e6 pubmed publisher
Wang T, Xu Y, Yuan Y, Xu P, Zhang C, Li F, et al. Succinate induces skeletal muscle fiber remodeling via SUNCR1 signaling. EMBO Rep. 2019;20:e47892 pubmed publisher
Liu Z, Chen J, Chen Z. Muscle Fiber Type Changes in Lumbrical Muscles at Early Stages of Chronic Nerve Compression. Curr Med Sci. 2019;39:59-66 pubmed publisher
Sellers R, Mahmood S, Perumal G, Macaluso F, Kurland I. Phenotypic Modulation of Skeletal Muscle Fibers in LPIN1-Deficient Lipodystrophic ( fld) Mice. Vet Pathol. 2019;56:322-331 pubmed publisher
Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2018;: pubmed publisher
Cullins M, Krekeler B, Connor N. Differential impact of tongue exercise on intrinsic lingual muscles. Laryngoscope. 2018;128:2245-2251 pubmed publisher
Greschik H, Duteil D, Messaddeq N, Willmann D, Arrigoni L, Sum M, et al. The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis. 2017;8:e3173 pubmed publisher
Badin P, Vila I, Sopariwala D, Yadav V, Lorca S, Louche K, et al. Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice. Sci Rep. 2016;6:26442 pubmed publisher
Pardes A, Freedman B, Fryhofer G, Salka N, Bhatt P, Soslowsky L. Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model. Ann Biomed Eng. 2016;44:2901-2910 pubmed publisher
Bergmeister K, Gröger M, Aman M, Willensdorfer A, Manzano Szalai K, Salminger S, et al. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry. Muscle Nerve. 2016;54:292-9 pubmed publisher
Gorski J, Huffman N, Vallejo J, Brotto L, Chittur S, Breggia A, et al. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. J Biol Chem. 2016;291:4308-22 pubmed publisher
Khogali S, Lucas B, Ammar T, DeJong D, Barbalinardo M, Hayward L, et al. Physiological basis for muscle stiffness and weakness in a knock-in M1592V mouse model of hyperkalemic periodic paralysis. Physiol Rep. 2015;3: pubmed publisher
Stark D, Coffey N, Pancoast H, Arnold L, Walker J, Vallée J, et al. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol. 2015;211:1077-91 pubmed publisher
Seiler S, Koves T, Gooding J, Wong K, Stevens R, Ilkayeva O, et al. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab. 2015;22:65-76 pubmed publisher
Guerra J, Ferrer B, Giralt M, Comes G, Carrasco J, Molinero A, et al. Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine. 2015;74:145-51 pubmed publisher
Riedl I, Osler M, Benziane B, Chibalin A, Zierath J. Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle. Physiol Rep. 2015;3: pubmed publisher
Sakakibara I, Santolini M, Ferry A, Hakim V, Maire P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 2014;10:e1004386 pubmed publisher
Lawlor M, Viola M, Meng H, Edelstein R, Liu F, Yan K, et al. Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice. Am J Pathol. 2014;184:1831-42 pubmed publisher
Dyar K, Ciciliot S, Wright L, Biensø R, Tagliazucchi G, Patel V, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3:29-41 pubmed publisher
Cleasby M, Jarmin S, Eilers W, Elashry M, Andersen D, Dickson G, et al. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am J Physiol Endocrinol Metab. 2014;306:E814-23 pubmed publisher
Bennett B, Mohamed J, Alway S. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS ONE. 2013;8:e83518 pubmed publisher
Gangopadhyay S. Systemic administration of follistatin288 increases muscle mass and reduces fat accumulation in mice. Sci Rep. 2013;3:2441 pubmed publisher
Storbeck C, Al Zahrani K, Sriram R, Kawesa S, O Reilly P, Daniel K, et al. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skelet Muscle. 2013;3:16 pubmed publisher
Bentzinger C, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle. 2013;3:6 pubmed publisher
Didier N, Hourde C, Amthor H, Marazzi G, Sassoon D. Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle. EMBO Mol Med. 2012;4:910-23 pubmed publisher
Braun T, Orwoll B, Zhu X, Levasseur P, Szumowski M, Nguyen M, et al. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system. PLoS ONE. 2012;7:e42183 pubmed publisher
Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE. 2012;7:e35273 pubmed publisher
Chai R, Vukovic J, Dunlop S, Grounds M, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS ONE. 2011;6:e28090 pubmed publisher
Braun T, Zhu X, Szumowski M, Scott G, Grossberg A, Levasseur P, et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med. 2011;208:2449-63 pubmed publisher
De Repentigny Y, Ferrier A, Ryan S, Sato T, Kothary R. Motor unit abnormalities in Dystonia musculorum mice. PLoS ONE. 2011;6:e21093 pubmed publisher
Scime A, Soleimani V, Bentzinger C, Gillespie M, Le Grand F, Grenier G, et al. Oxidative status of muscle is determined by p107 regulation of PGC-1alpha. J Cell Biol. 2010;190:651-62 pubmed publisher
Otto A, Macharia R, Matsakas A, Valasek P, Mankoo B, Patel K. A hypoplastic model of skeletal muscle development displaying reduced foetal myoblast cell numbers, increased oxidative myofibres and improved specific tension capacity. Dev Biol. 2010;343:51-62 pubmed publisher
Mittal A, Bhatnagar S, Kumar A, Lach Trifilieff E, Wauters S, Li H, et al. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol. 2010;188:833-49 pubmed publisher
Smerdu V, Soukup T. Demonstration of myosin heavy chain isoforms in rat and humans: the specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem. 2008;52:179-90 pubmed
Kuang S, Chargé S, Seale P, Huh M, Rudnicki M. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol. 2006;172:103-13 pubmed
Maccatrozzo L, Patruno M, Toniolo L, Reggiani C, Mascarello F. Myosin heavy chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle. Eur J Histochem. 2004;48:357-66 pubmed
Putman C, Xu X, Gillies E, Maclean I, Bell G. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92:376-84 pubmed
Lefaucheur L, Ecolan P, Plantard L, Gueguen N. New insights into muscle fiber types in the pig. J Histochem Cytochem. 2002;50:719-30 pubmed
Widmer C, Morris Wiman J, Nekula C. Spatial distribution of myosin heavy-chain isoforms in mouse masseter. J Dent Res. 2002;81:33-8 pubmed
Rubinstein N, Hoh J. The distribution of myosin heavy chain isoforms among rat extraocular muscle fiber types. Invest Ophthalmol Vis Sci. 2000;41:3391-8 pubmed
Nguyen T, Shrager J, Kaiser L, Mei L, Daood M, Watchko J, et al. Developmental myosin heavy chains in the adult human diaphragm: coexpression patterns and effect of COPD. J Appl Physiol (1985). 2000;88:1446-56 pubmed
Shiotani A, Flint P. Expression of extraocular-superfast-myosin heavy chain in rat laryngeal muscles. Neuroreport. 1998;9:3639-42 pubmed
Sharp S, Dingermann T, Schaack J, Sharp J, Burke D, DeRobertis E, et al. Each element of the Drosophila tRNAArg gene split promoter directs transcription in Xenopus oocytes. Nucleic Acids Res. 1983;11:8677-90 pubmed
Azzarello G, Sartore S, Saggin L, Gorza L, D Andrea E, Chieco Bianchi L, et al. Myosin isoform expression in rat rhabdomyosarcoma induced by Moloney murine sarcoma virus. J Cancer Res Clin Oncol. 1987;113:417-29 pubmed
Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989;10:197-205 pubmed
Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem. 1990;38:257-65 pubmed
product information
Internal ID :
5834
Name :
BF-F3
Depositor Name :
Schiaffino, S.
Depositor Institution :
Universita degli Studi di Padova
Date Deposited :
3/25/09
Allow Hybridoma Distribution :
Yes
Cells Available (legacy) :
Yes
Antigen :
Myosin Heavy Chain Type IIB
Antigen Species :
bovine
Host Species :
mouse
Isotype :
MIgM
Isotype for catalog (legacy) :
IgM
Positive Tested Species Reactivity :
Bovine,Mouse,Porcine,Rat,Sheep
Species Tested (legacy) :
rat, mouse, sheep
Initial Publication Pubmed ID :
3305517
Depositor Notes (Special Instructions) :
Fusion date: 1983. Western Blot recognizes 2B myosin heavy chain
Collections :
Muscular dystrophy,Skeletal muscle
Search Keywords :
schiaffino, Myosin Heavy Chain Type IIB , myosin heavy chain 2B, myh4, monoclonal, bovine, IgM,Mouse,Porcine,Rat,Sheep, ELISA,Immunofluorescence,Immunohistochemistry,Western Blot
Antigen Molecular Weight :
Predicted: 223 kDa
Gene :
MYH4
Uniprot ID :
E1BP87
Antibody Registry ID :
AB_2266724
Immunogen :
Purified myosin from fetal bovine skeletal muscle.
Immunogen Sequence :
Full length protein
Clonality :
Monoclonal
Myeloma Strain :
NS0
Epitope Mapped :
No
Recommended Applications :
ELISA,Immunofluorescence,Immunohistochemistry,Western Blot
Immunoblotting (legacy) :
yes
Immunohistochemistry Pubmed IDs :
11967283 2547831 20417199 6561520 15241691 9858372 18840559 15718201 2137154 10749841 26719336 30381013 31365869
Immunofluorescence Pubmed IDs :
24567902 6561520 3305517 22530000 11006229 25982555 27150673 29168801 29243257 26788932 27150673 30580997 30868492 31318145
Western Blot Pubmed IDs :
2547831 9858372 18840559 11820364
ELISA Pubmed IDs :
3305517
Additional Information :
RRID:AB_2266724
DSHB Growth Medium :
Iscove's
References (legacy) :
J. Muscle Res. Cell. Motil. 10(3), 197-205.; Dev. Biol. 343, 51-62.; J. Biol. Chem. 288(2), 1226-1237.
company information
Developmental Studies Hybridoma Bank
University of Iowa
http://dshb.biology.uiowa.edu
headquarters: US