Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 3f
| Owen A, Patel S, Smith J, Balasuriya B, Mori S, Hawk G, et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. elife. 2019;8: pubmed publisher
|
- immunohistochemistry - frozen section; rat; 1:100; loading ...; fig 4b
| Bergmeister K, Aman M, Muceli S, Vujaklija I, Manzano Szalai K, Unger E, et al. Peripheral nerve transfers change target muscle structure and function. Sci Adv. 2019;5:eaau2956 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 4a
| Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig s3a
| Maani N, Sabha N, Rezai K, Ramani A, Groom L, Eltayeb N, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Commun. 2018;9:4849 pubmed publisher
|
- immunohistochemistry; mouse; loading ...; fig 3c
| Honda M, Hidaka K, Fukada S, Sugawa R, Shirai M, Ikawa M, et al. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep. 2017;7:7168 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 3b
- western blot; mouse; loading ...; fig 3c
| Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:50; loading ...; fig 1g
| Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 3b
| Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 3c
| Morrow R, Picard M, Derbeneva O, Leipzig J, McManus M, Gouspillou G, et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A. 2017;114:2705-2710 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 1f
| Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:100; loading ...; fig 3
| Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed publisher
|
- immunohistochemistry; mouse; 1:10; loading ...; fig 5a
| Hogarth M, Houweling P, Thomas K, Gordish Dressman H, Bello L, Pegoraro E, et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143 pubmed publisher
|
- immunohistochemistry - frozen section; rat; 1:200; fig 1
| Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed publisher
|
- immunohistochemistry; mouse; loading ...; fig 2g
| Coleman S, Rebalka I, D Souza D, Deodhare N, Desjardins E, Hawke T. Myostatin inhibition therapy for insulin-deficient type 1 diabetes. Sci Rep. 2016;6:32495 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 4a
| Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
|
- immunohistochemistry; mouse; 1:100; fig s6
| Moretti I, Ciciliot S, Dyar K, Abraham R, Murgia M, Agatea L, et al. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun. 2016;7:12397 pubmed publisher
|
- immunohistochemistry; rat; 1:100; loading ...; fig 1d
| Rui Y, Pan F, Mi J. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles. Anat Rec (Hoboken). 2016;299:1397-401 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 5
- immunohistochemistry - frozen section; human; fig 5
| Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed publisher
|
- immunohistochemistry; mouse; fig 2
| Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed publisher
|
- immunohistochemistry - frozen section; rat; loading ...
| Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8:712-29 pubmed publisher
|
- immunohistochemistry; mouse; fig 1
| Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed publisher
|
- immunohistochemistry; mouse; fig s5
| Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 3
| Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 5
| Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed publisher
|
- immunocytochemistry; mouse
| Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed publisher
|
- immunohistochemistry - frozen section; swine; 1:10
| Clark D, Clark D, Beever J, Dilger A. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass. J Anim Sci. 2015;93:2546-58 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 2
| Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:100
| Fry C, Lee J, Mula J, Kirby T, Jackson J, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76-80 pubmed publisher
|
- immunohistochemistry; rat; 1:40
| Mori T, Agata N, Itoh Y, Miyazu Inoue M, Sokabe M, Taguchi T, et al. Stretch speed-dependent myofiber damage and functional deficits in rat skeletal muscle induced by lengthening contraction. Physiol Rep. 2014;2: pubmed publisher
|
- immunohistochemistry; rat; 1:200
- immunohistochemistry; mouse; 1:200
| Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed publisher
|
- immunohistochemistry - frozen section; mouse
| Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed publisher
|
- immunohistochemistry; mouse; fig 3
| Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. ?-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet. 2014;23:1879-93 pubmed publisher
|
- immunohistochemistry - frozen section; mouse
| Barton E, Park S, James J, Makarewich C, Philippou A, Eletto D, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J. 2012;26:3691-702 pubmed publisher
|
| Hunt L, Stover J, Haugen B, Shaw T, Li Y, Pagala V, et al. A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Rep. 2019;28:1268-1281.e6 pubmed publisher
|
| Wang T, Xu Y, Yuan Y, Xu P, Zhang C, Li F, et al. Succinate induces skeletal muscle fiber remodeling via SUNCR1 signaling. EMBO Rep. 2019;20:e47892 pubmed publisher
|
| Liu Z, Chen J, Chen Z. Muscle Fiber Type Changes in Lumbrical Muscles at Early Stages of Chronic Nerve Compression. Curr Med Sci. 2019;39:59-66 pubmed publisher
|
| Sellers R, Mahmood S, Perumal G, Macaluso F, Kurland I. Phenotypic Modulation of Skeletal Muscle Fibers in LPIN1-Deficient Lipodystrophic ( fld) Mice. Vet Pathol. 2019;56:322-331 pubmed publisher
|
| Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2018;: pubmed publisher
|
| Cullins M, Krekeler B, Connor N. Differential impact of tongue exercise on intrinsic lingual muscles. Laryngoscope. 2018;128:2245-2251 pubmed publisher
|
| Greschik H, Duteil D, Messaddeq N, Willmann D, Arrigoni L, Sum M, et al. The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis. 2017;8:e3173 pubmed publisher
|
| Badin P, Vila I, Sopariwala D, Yadav V, Lorca S, Louche K, et al. Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice. Sci Rep. 2016;6:26442 pubmed publisher
|
| Pardes A, Freedman B, Fryhofer G, Salka N, Bhatt P, Soslowsky L. Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model. Ann Biomed Eng. 2016;44:2901-2910 pubmed publisher
|
| Bergmeister K, Gröger M, Aman M, Willensdorfer A, Manzano Szalai K, Salminger S, et al. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry. Muscle Nerve. 2016;54:292-9 pubmed publisher
|
| Gorski J, Huffman N, Vallejo J, Brotto L, Chittur S, Breggia A, et al. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age. J Biol Chem. 2016;291:4308-22 pubmed publisher
|
| Khogali S, Lucas B, Ammar T, DeJong D, Barbalinardo M, Hayward L, et al. Physiological basis for muscle stiffness and weakness in a knock-in M1592V mouse model of hyperkalemic periodic paralysis. Physiol Rep. 2015;3: pubmed publisher
|
| Stark D, Coffey N, Pancoast H, Arnold L, Walker J, Vallée J, et al. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol. 2015;211:1077-91 pubmed publisher
|
| Seiler S, Koves T, Gooding J, Wong K, Stevens R, Ilkayeva O, et al. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise. Cell Metab. 2015;22:65-76 pubmed publisher
|
| Guerra J, Ferrer B, Giralt M, Comes G, Carrasco J, Molinero A, et al. Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine. 2015;74:145-51 pubmed publisher
|
| Riedl I, Osler M, Benziane B, Chibalin A, Zierath J. Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle. Physiol Rep. 2015;3: pubmed publisher
|
| Sakakibara I, Santolini M, Ferry A, Hakim V, Maire P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 2014;10:e1004386 pubmed publisher
|
| Lawlor M, Viola M, Meng H, Edelstein R, Liu F, Yan K, et al. Differential muscle hypertrophy is associated with satellite cell numbers and Akt pathway activation following activin type IIB receptor inhibition in Mtm1 p.R69C mice. Am J Pathol. 2014;184:1831-42 pubmed publisher
|
| Dyar K, Ciciliot S, Wright L, Biensø R, Tagliazucchi G, Patel V, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3:29-41 pubmed publisher
|
| Cleasby M, Jarmin S, Eilers W, Elashry M, Andersen D, Dickson G, et al. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Am J Physiol Endocrinol Metab. 2014;306:E814-23 pubmed publisher
|
| Bennett B, Mohamed J, Alway S. Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS ONE. 2013;8:e83518 pubmed publisher
|
| Gangopadhyay S. Systemic administration of follistatin288 increases muscle mass and reduces fat accumulation in mice. Sci Rep. 2013;3:2441 pubmed publisher
|
| Storbeck C, Al Zahrani K, Sriram R, Kawesa S, O Reilly P, Daniel K, et al. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skelet Muscle. 2013;3:16 pubmed publisher
|
| Bentzinger C, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle. 2013;3:6 pubmed publisher
|
| Didier N, Hourde C, Amthor H, Marazzi G, Sassoon D. Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle. EMBO Mol Med. 2012;4:910-23 pubmed publisher
|
| Braun T, Orwoll B, Zhu X, Levasseur P, Szumowski M, Nguyen M, et al. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system. PLoS ONE. 2012;7:e42183 pubmed publisher
|
| Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE. 2012;7:e35273 pubmed publisher
|
| Chai R, Vukovic J, Dunlop S, Grounds M, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS ONE. 2011;6:e28090 pubmed publisher
|
| Braun T, Zhu X, Szumowski M, Scott G, Grossberg A, Levasseur P, et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med. 2011;208:2449-63 pubmed publisher
|
| De Repentigny Y, Ferrier A, Ryan S, Sato T, Kothary R. Motor unit abnormalities in Dystonia musculorum mice. PLoS ONE. 2011;6:e21093 pubmed publisher
|
| Scime A, Soleimani V, Bentzinger C, Gillespie M, Le Grand F, Grenier G, et al. Oxidative status of muscle is determined by p107 regulation of PGC-1alpha. J Cell Biol. 2010;190:651-62 pubmed publisher
|
| Otto A, Macharia R, Matsakas A, Valasek P, Mankoo B, Patel K. A hypoplastic model of skeletal muscle development displaying reduced foetal myoblast cell numbers, increased oxidative myofibres and improved specific tension capacity. Dev Biol. 2010;343:51-62 pubmed publisher
|
| Mittal A, Bhatnagar S, Kumar A, Lach Trifilieff E, Wauters S, Li H, et al. The TWEAK-Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J Cell Biol. 2010;188:833-49 pubmed publisher
|
| Smerdu V, Soukup T. Demonstration of myosin heavy chain isoforms in rat and humans: the specificity of seven available monoclonal antibodies used in immunohistochemical and immunoblotting methods. Eur J Histochem. 2008;52:179-90 pubmed
|
| Kuang S, Chargé S, Seale P, Huh M, Rudnicki M. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol. 2006;172:103-13 pubmed
|
| Maccatrozzo L, Patruno M, Toniolo L, Reggiani C, Mascarello F. Myosin heavy chain 2B isoform is expressed in specialized eye muscles but not in trunk and limb muscles of cattle. Eur J Histochem. 2004;48:357-66 pubmed
|
| Putman C, Xu X, Gillies E, Maclean I, Bell G. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92:376-84 pubmed
|
| Lefaucheur L, Ecolan P, Plantard L, Gueguen N. New insights into muscle fiber types in the pig. J Histochem Cytochem. 2002;50:719-30 pubmed
|
| Widmer C, Morris Wiman J, Nekula C. Spatial distribution of myosin heavy-chain isoforms in mouse masseter. J Dent Res. 2002;81:33-8 pubmed
|
| Rubinstein N, Hoh J. The distribution of myosin heavy chain isoforms among rat extraocular muscle fiber types. Invest Ophthalmol Vis Sci. 2000;41:3391-8 pubmed
|
| Nguyen T, Shrager J, Kaiser L, Mei L, Daood M, Watchko J, et al. Developmental myosin heavy chains in the adult human diaphragm: coexpression patterns and effect of COPD. J Appl Physiol (1985). 2000;88:1446-56 pubmed
|
| Shiotani A, Flint P. Expression of extraocular-superfast-myosin heavy chain in rat laryngeal muscles. Neuroreport. 1998;9:3639-42 pubmed
|
| Sharp S, Dingermann T, Schaack J, Sharp J, Burke D, DeRobertis E, et al. Each element of the Drosophila tRNAArg gene split promoter directs transcription in Xenopus oocytes. Nucleic Acids Res. 1983;11:8677-90 pubmed
|
| Azzarello G, Sartore S, Saggin L, Gorza L, D Andrea E, Chieco Bianchi L, et al. Myosin isoform expression in rat rhabdomyosarcoma induced by Moloney murine sarcoma virus. J Cancer Res Clin Oncol. 1987;113:417-29 pubmed
|
| Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, et al. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989;10:197-205 pubmed
|
| Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem. 1990;38:257-65 pubmed
|