product summary
company name :
Developmental Studies Hybridoma Bank
product type :
antibody
product name :
Myosin heavy chain (human slow fibers)
catalog :
A4.840
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
A4.840
reactivity :
human, mouse, chicken
application :
western blot, ELISA, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - frozen section
citations: 56
Published Application/Species/Sample/DilutionReference
  • western blot; human; 1:200; loading ...; fig 3c
Wyckelsma V, Levinger I, Murphy R, Petersen A, Perry B, Hedges C, et al. Intense interval training in healthy older adults increases skeletal muscle [3H]ouabain-binding site content and elevates Na+,K+-ATPase ?2 isoform abundance in Type II fibers. Physiol Rep. 2017;5: pubmed publisher
  • western blot; human; 1:200; loading ...; fig 7
Perry B, Wyckelsma V, Murphy R, Steward C, Anderson M, Levinger I, et al. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol (1985). 2016;121:1074-1086 pubmed publisher
  • immunohistochemistry; human; 1:25; loading ...; fig 3a II
Dirks M, Wall B, van de Valk B, Holloway T, Holloway G, Chabowski A, et al. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes. 2016;65:2862-75 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 5
  • western blot; mouse; fig 5
Stewart M, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, et al. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech. 2016;9:347-59 pubmed publisher
  • immunohistochemistry - frozen section; scFv; fig 5
Valenzuela N, Fan Q, Fa ak F, Soibam B, Nagandla H, Liu Y, et al. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. Dis Model Mech. 2016;9:335-45 pubmed publisher
  • western blot; human; 1:200; fig 1
Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed publisher
  • immunohistochemistry; human; 1:20; loading ...; tbl 1
Shah F, Berggren D, Holmlund T, Levring Jäghagen E, Stål P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 1
Tallon C, Russell K, Sakhalkar S, Andrapallayal N, Farah M. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. Neuroscience. 2016;312:179-89 pubmed publisher
  • western blot; human; fig 1
Mohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016;116:251-62 pubmed publisher
  • western blot; human; fig 2
Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:600; fig 9
Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed publisher
  • immunohistochemistry; human
Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed publisher
  • western blot; human; 1:200; fig 1a
Lamboley C, Murphy R, McKenna M, Lamb G. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol. 2014;592:1381-95 pubmed publisher
Morton A, Smuder A, Wiggs M, Hall S, Ahn B, Hinkley J, et al. Increased SOD2 in the diaphragm contributes to exercise-induced protection against ventilator-induced diaphragm dysfunction. Redox Biol. 2019;20:402-413 pubmed publisher
Smeuninx B, McKendry J, Wilson D, Martin U, Breen L. Age-Related Anabolic Resistance of Myofibrillar Protein Synthesis Is Exacerbated in Obese Inactive Individuals. J Clin Endocrinol Metab. 2017;102:3535-3545 pubmed publisher
Saha M, Mitsuhashi S, Jones M, Manko K, Reddy H, Bruels C, et al. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum Mol Genet. 2017;26:2984-3000 pubmed publisher
Chow L, Mashek D, Wang Q, Shepherd S, Goodpaster B, Dube J. Effect of acute physiological free fatty acid elevation in the context of hyperinsulinemia on fiber type-specific IMCL accumulation. J Appl Physiol (1985). 2017;123:71-78 pubmed publisher
Vikmoen O, Rønnestad B, Ellefsen S, Raastad T. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes. Physiol Rep. 2017;5: pubmed publisher
Zygmunt D, Singhal N, Kim M, Cramer M, Crowe K, Xu R, et al. Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans. Mol Cell Biol. 2017;37: pubmed publisher
Wyckelsma V, Levinger I, McKenna M, Formosa L, Ryan M, Petersen A, et al. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. J Physiol. 2017;595:3345-3359 pubmed publisher
Zhao K, Shen C, Lu Y, Huang Z, Li L, Rand C, et al. Muscle Yap Is a Regulator of Neuromuscular Junction Formation and Regeneration. J Neurosci. 2017;37:3465-3477 pubmed publisher
Mohan D, Lewis A, Patel M, Curtis K, Lee J, Hopkinson N, et al. Using laser capture microdissection to study fiber specific signaling in locomotor muscle in COPD: A pilot study. Muscle Nerve. 2017;55:902-912 pubmed publisher
Giorgetti E, Yu Z, Chua J, Shimamura R, Zhao L, Zhu F, et al. Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing. Cell Rep. 2016;17:125-136 pubmed publisher
Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed publisher
Coughlin D, Shiels L, Nuthakki S, Shuman J. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle. Comp Biochem Physiol A Mol Integr Physiol. 2016;196:46-53 pubmed publisher
Hyatt H, Toedebusch R, Ruegsegger G, Mobley C, Fox C, McGinnis G, et al. Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity. Physiol Rep. 2015;3: pubmed publisher
Guerra J, Ferrer B, Giralt M, Comes G, Carrasco J, Molinero A, et al. Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine. 2015;74:145-51 pubmed publisher
Boman N, Burén J, Antti H, Svensson M. Gene expression and fiber type variations in repeated vastus lateralis biopsies. Muscle Nerve. 2015;52:812-7 pubmed publisher
Coughlin D, Akhtar M. Contractile properties of the myotomal muscle of sheepshead, Archosargus probatocephalus. J Exp Zool A Ecol Genet Physiol. 2015;323:169-78 pubmed publisher
Verhees K, Pansters N, Baarsma H, Remels A, Haegens A, de Theije C, et al. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res. 2013;14:117 pubmed publisher
Luo Q, Douglas M, BURKHOLDER T, Sokoloff A. Absence of developmental and unconventional myosin heavy chain in human suprahyoid muscles. Muscle Nerve. 2014;49:534-44 pubmed publisher
Bentzinger C, Lin S, Romanino K, Castets P, Guridi M, Summermatter S, et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle. 2013;3:6 pubmed publisher
Osterlund C, Liu J, Thornell L, Eriksson P. Intrafusal myosin heavy chain expression of human masseter and biceps muscles at young age shows fundamental similarities but also marked differences. Histochem Cell Biol. 2013;139:895-907 pubmed publisher
Valdez G, Tapia J, Lichtman J, Fox M, Sanes J. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLoS ONE. 2012;7:e34640 pubmed publisher
Lee Y, Mikesh M, Smith I, Rimer M, Thompson W. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol. 2011;356:432-44 pubmed publisher
Otto A, Macharia R, Matsakas A, Valasek P, Mankoo B, Patel K. A hypoplastic model of skeletal muscle development displaying reduced foetal myoblast cell numbers, increased oxidative myofibres and improved specific tension capacity. Dev Biol. 2010;343:51-62 pubmed publisher
Sokoloff A, Li H, Burkholder T. Limited expression of slow tonic myosin heavy chain in human cranial muscles. Muscle Nerve. 2007;36:183-9 pubmed
Schaart G, Hesselink R, Keizer H, Van Kranenburg G, Drost M, Hesselink M. A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol. 2004;122:161-9 pubmed
Salerno M, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M. Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol. 2004;287:C1031-40 pubmed
Keizer H, Schaart G, Tandon N, Glatz J, Luiken J. Subcellular immunolocalisation of fatty acid translocase (FAT)/CD36 in human type-1 and type-2 skeletal muscle fibres. Histochem Cell Biol. 2004;121:101-7 pubmed
Brazelton T, Nystrom M, Blau H. Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev Biol. 2003;262:64-74 pubmed
Liu J, Thornell L, Pedrosa Domellöf F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study. J Histochem Cytochem. 2003;51:175-86 pubmed
Lindman R, Stål P. Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing. J Neurol Sci. 2002;195:11-23 pubmed
Liu J, Eriksson P, Thornell L, Pedrosa Domellöf F. Myosin heavy chain composition of muscle spindles in human biceps brachii. J Histochem Cytochem. 2002;50:171-83 pubmed
Lindman R, Paulin G, Stål P. Morphological characterization of the levator veli palatini muscle in children born with cleft palates. Cleft Palate Craniofac J. 2001;38:438-48 pubmed
Jergovic D, Stål P, Lidman D, Lindvall B, Hildebrand C. Changes in a rat facial muscle after facial nerve injury and repair. Muscle Nerve. 2001;24:1202-12 pubmed
Stål P, Lindman R. Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supply. J Anat. 2000;197 ( Pt 2):275-90 pubmed
Maggs A, Taylor Harris P, Peckham M, Hughes S. Evidence for differential post-translational modifications of slow myosin heavy chain during murine skeletal muscle development. J Muscle Res Cell Motil. 2000;21:101-13 pubmed
Pedrosa Domellof F, Holmgren Y, Lucas C, Hoh J, Thornell L. Human extraocular muscles: unique pattern of myosin heavy chain expression during myotube formation. Invest Ophthalmol Vis Sci. 2000;41:1608-16 pubmed
Shiotani A, Jones R, Flint P. Postnatal development of myosin heavy chain isoforms in rat laryngeal muscles. Ann Otol Rhinol Laryngol. 1999;108:509-15 pubmed
Dunn S, Michel R. Coordinated expression of myosin heavy chain isoforms and metabolic enzymes within overloaded rat muscle fibers. Am J Physiol. 1997;273:C371-83 pubmed
Tikunov B, Levine S, Mancini D. Chronic congestive heart failure elicits adaptations of endurance exercise in diaphragmatic muscle. Circulation. 1997;95:910-6 pubmed
Michel R, Parry D, Dunn S. Regulation of myosin heavy chain expression in adult rat hindlimb muscles during short-term paralysis: comparison of denervation and tetrodotoxin-induced neural inactivation. FEBS Lett. 1996;391:39-44 pubmed
Hughes S, Cho M, Karsch Mizrachi I, Travis M, Silberstein L, Leinwand L, et al. Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol. 1993;158:183-99 pubmed
Webster C, Silberstein L, Hays A, Blau H. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell. 1988;52:503-13 pubmed
Hughes S, Blau H. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell. 1992;68:659-71 pubmed
product information
Internal ID :
1274
Name :
A4.840
Depositor Name :
Blau, H.M.
Depositor Institution :
Baxter Lab for Stem Cell Biology, Stanford University
Depositor Website :
http://baxterlab.stanford.edu/
Date Deposited :
8/25/93
Allow Hybridoma Distribution :
Yes
Cells Available (legacy) :
Yes
Antigen :
Myosin heavy chain (human slow fibers)
Antigen Species :
Human
Host Species :
mouse
Isotype :
MIgM
Isotype for catalog (legacy) :
IgM
Positive Tested Species Reactivity :
C. elegans,Chicken,Fish,Human,Rodent
Species Tested (legacy) :
human, rodent (others?)
Initial Publication Pubmed ID :
3342447
Depositor Notes (Special Instructions) :
Stains first developmental MyHCI and the epitope on slow MHC is different from that of mAbs A4.951 and N2.261 [PMID 7687223]
Collections :
Cardiac development,Cell markers,Cytoskeleton,Human,Skeletal muscle
Search Keywords :
Blau, H. M., Myosin heavy chain (human slow fibers), Human, MIgM, Human/Rodent/Fish/C. elegans/Chicken, MYH7, CMH1; MPD1; SPMD; SPMM; CMD1S; MYHCB, AB_528384, monoclonal, Human/Cell markers/Cytoskeletal elements/Skeletal muscle/Cardiac development proteins, Immunohistochemistry/Immunofluorescence/Western Blot/ELISA/Immunoprecipitation
Antigen Molecular Weight :
220kDa
Gene :
MYH7
Alternate Gene Name(s) :
CMH1; MPD1; SPMD; SPMM; CMD1S; MYHCB
Uniprot ID :
P12883
Antibody Registry ID :
AB_528384
Immunogen :
partially purified myosin (pyrophosphate extracted) from human adult (22 year old) skeletal muscle
Clonality :
Monoclonal
Myeloma Strain :
653
Epitope Mapped :
Yes
Epitope Location or Sequence :
C-terminal excluding the first 100 aa of the N-terminal
Epitope Map PubMed ID :
7687223
Recommended Applications :
ELISA,FFPE,Immunofluorescence,Immunohistochemistry,Immunoprecipitation,Western Blot
Immunoblotting (legacy) :
Yes
Immunohistochemistry Pubmed IDs :
23497627 10845576 11494274 11799136 12533526 1531450 11005719 11522165 11867069 14740222 15322861 17486578 23835800 10961835 9277335 23306907
Immunofluorescence Pubmed IDs :
3342447 25703336 25982555 26592719 26945595 25676176 26597319 10961835 15189813 7687223 21658376 14512018 8706926 27680944 27681426 28498977
Western Blot Pubmed IDs :
7687223 21088205 3342447 10845576 11799136 17486578 27055500 23835800 10335716 9054750
ELISA Pubmed IDs :
7687223 3342447
FFPE Pubmed IDs :
24924099
Additional Information :
A4.480 may be used to stain skeletal muscle paraffin sections. High pH antigen retrieval is required. See PUBMED ID: 24924099 .
DSHB Growth Medium :
Iscove's
References (legacy) :
Cell 52, 503-513.; Cell 68, 659-671.; J. Cell Biol. 121, 795-810.; Dev. Biol. 158, 183-199.; Invest. Ophthalmol. Vis. Sci. 41(7), 1608-1616.; J. Anat. 197, 275-290.; Cleft Palate-Craniofacial J. 38(5), 438-448.; Muscle Nerve 24, 1202-1212.; J. Neurol. Sci. 195, 11-23.; J. Histochem. Cytochem. 50(2), 171-183.; J. Histochem. Cytochem. 51(2), 175-186.; Histochem. Cell Biol. 122, 161-169.; Histochem. Cell Biol. 121, 101-107.; Am. J. Physiol. Cell Physiol. 287, C1031-C1040.; Muscle Nerve 36, 183-189.; Dev. Biol. 343, 51-62.
company information
Developmental Studies Hybridoma Bank
University of Iowa
http://dshb.biology.uiowa.edu
headquarters: US