Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry - frozen section; mouse; 0.5 ug/ml; loading ...; fig 2a
| Bartoli F, Debant M, Chuntharpursat Bon E, Evans E, Musialowski K, Parsonage G, et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest. 2022;132: pubmed publisher
|
- immunohistochemistry; mouse; loading ...
| Steinert N, Potts G, Wilson G, Klamen A, Lin K, Hermanson J, et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 2021;34:108796 pubmed publisher
|
- immunohistochemistry - frozen section; human; loading ...; fig 6e
| Seo J, Kang J, Kim Y, Jo Y, Kim J, Hann S, et al. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun. 2021;12:1294 pubmed publisher
|
- immunohistochemistry; rat; 1:1000; loading ...; fig 2e
| Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed publisher
|
- western blot; mouse; loading ...; fig 3c
| Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; loading ...; fig 1f
| Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed publisher
|
- immunohistochemistry; human; 1:25; loading ...
| St Jean Pelletier F, Pion C, Leduc Gaudet J, Sgarioto N, Zovilé I, Barbat Artigas S, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8:213-228 pubmed publisher
|
- immunohistochemistry; mouse; 1:2
| Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed publisher
|
- immunohistochemistry; human; loading ...; fig 1a
| White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed publisher
|
- immunohistochemistry - frozen section; human; 1:25; loading ...; fig 4a
| Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed publisher
|
- immunohistochemistry - frozen section; rat; 1:25; fig 1
| Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:5; fig 5
| Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed publisher
|
- immunohistochemistry - frozen section; human; 1:25; fig 1b
| Power G, Minozzo F, Spendiff S, Filion M, Konokhova Y, Purves Smith M, et al. Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. Am J Physiol Cell Physiol. 2016;310:C318-27 pubmed publisher
|
- immunohistochemistry; mouse; fig 1
| Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed publisher
|
- immunohistochemistry; human
| Walton R, Finlin B, Mula J, Long D, Zhu B, Fry C, et al. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol Rep. 2015;3: pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:600; fig 9
| Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 1
| Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
|
- immunohistochemistry; human; 1:25
- immunohistochemistry; rat; 1:25
- immunohistochemistry; mouse; 1:25
| Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed publisher
|
- immunohistochemistry; human
| Fry C, Noehren B, Mula J, Ubele M, Westgate P, Kern P, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592:2625-35 pubmed publisher
|
| Carroll K, Bazyler C, Bernards J, Taber C, Stuart C, DeWeese B, et al. Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity. Sports (Basel). 2019;7: pubmed publisher
|
| Sonjak V, Jacob K, Morais J, Rivera Zengotita M, Spendiff S, Spake C, et al. Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. J Physiol. 2019;597:5009-5023 pubmed publisher
|
| Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2018;: pubmed publisher
|
| Sellers R, Mahmood S, Perumal G, Macaluso F, Kurland I. Phenotypic Modulation of Skeletal Muscle Fibers in LPIN1-Deficient Lipodystrophic ( fld) Mice. Vet Pathol. 2019;56:322-331 pubmed publisher
|
| Cullins M, Krekeler B, Connor N. Differential impact of tongue exercise on intrinsic lingual muscles. Laryngoscope. 2018;128:2245-2251 pubmed publisher
|
| Greschik H, Duteil D, Messaddeq N, Willmann D, Arrigoni L, Sum M, et al. The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis. 2017;8:e3173 pubmed publisher
|
| Murgia M, Toniolo L, Nagaraj N, Ciciliot S, Vindigni V, Schiaffino S, et al. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep. 2017;19:2396-2409 pubmed publisher
|
| Jarosch I, Gehlert S, Jacko D, Koczulla R, Wencker M, Welte T, et al. Different Training-Induced Skeletal Muscle Adaptations in COPD Patients with and without Alpha-1 Antitrypsin Deficiency. Respiration. 2016;92:339-347 pubmed
|
| Morton R, Oikawa S, Wavell C, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121:129-38 pubmed publisher
|
| Khogali S, Lucas B, Ammar T, DeJong D, Barbalinardo M, Hayward L, et al. Physiological basis for muscle stiffness and weakness in a knock-in M1592V mouse model of hyperkalemic periodic paralysis. Physiol Rep. 2015;3: pubmed publisher
|
| Scribbans T, Ma J, Edgett B, Vorobej K, Mitchell A, Zelt J, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39:1305-13 pubmed publisher
|
| Mouisel E, Relizani K, Mille Hamard L, Denis R, Hourd C, Agbulut O, et al. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2014;307:R444-54 pubmed publisher
|
| Ellefsen S, Vikmoen O, Zacharoff E, Rauk I, Slettaløkken G, Hammarström D, et al. Reliable determination of training-induced alterations in muscle fiber composition in human skeletal muscle using quantitative polymerase chain reaction. Scand J Med Sci Sports. 2014;24:e332-42 pubmed publisher
|
| Scribbans T, Edgett B, Vorobej K, Mitchell A, Joanisse S, Matusiak J, et al. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS ONE. 2014;9:e98119 pubmed publisher
|
| Malfatti E, Lehtokari V, Böhm J, De Winter J, Schäffer U, Estournet B, et al. Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol Commun. 2014;2:44 pubmed publisher
|
| Lucas B, Ammar T, Khogali S, DeJong D, Barbalinardo M, Nishi C, et al. Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content. Physiol Genomics. 2014;46:385-97 pubmed publisher
|
| Matthews C, Lovering R, Bowen T, Fishman P. Tetanus toxin preserves skeletal muscle contractile force and size during limb immobilization. Muscle Nerve. 2014;50:759-66 pubmed publisher
|
| Joanne P, Hourde C, Ochala J, Caudéran Y, Medja F, Vignaud A, et al. Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle. PLoS ONE. 2012;7:e35346 pubmed publisher
|
| Rhee H, Steel C, Derksen F, Robinson N, Hoh J. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy. J Histochem Cytochem. 2009;57:787-800 pubmed publisher
|
| Lucas C, Kang L, Hoh J. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun. 2000;272:303-8 pubmed
|