product summary
company name :
Developmental Studies Hybridoma Bank
product type :
antibody
product name :
Myosin heavy chain, fast, 2X
catalog :
6H1
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
6H1
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunohistochemistry - frozen section
citations: 39
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry - frozen section; mouse; 0.5 ug/ml; loading ...; fig 2a
Bartoli F, Debant M, Chuntharpursat Bon E, Evans E, Musialowski K, Parsonage G, et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest. 2022;132: pubmed publisher
  • immunohistochemistry; mouse; loading ...
Steinert N, Potts G, Wilson G, Klamen A, Lin K, Hermanson J, et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 2021;34:108796 pubmed publisher
  • immunohistochemistry - frozen section; human; loading ...; fig 6e
Seo J, Kang J, Kim Y, Jo Y, Kim J, Hann S, et al. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun. 2021;12:1294 pubmed publisher
  • immunohistochemistry; rat; 1:1000; loading ...; fig 2e
Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed publisher
  • western blot; mouse; loading ...; fig 3c
Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed publisher
  • immunohistochemistry - frozen section; mouse; loading ...; fig 1f
Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed publisher
  • immunohistochemistry; human; 1:25; loading ...
St Jean Pelletier F, Pion C, Leduc Gaudet J, Sgarioto N, Zovilé I, Barbat Artigas S, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8:213-228 pubmed publisher
  • immunohistochemistry; mouse; 1:2
Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed publisher
  • immunohistochemistry; human; loading ...; fig 1a
White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:25; loading ...; fig 4a
Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:25; fig 1
Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:5; fig 5
Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:25; fig 1b
Power G, Minozzo F, Spendiff S, Filion M, Konokhova Y, Purves Smith M, et al. Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. Am J Physiol Cell Physiol. 2016;310:C318-27 pubmed publisher
  • immunohistochemistry; mouse; fig 1
Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed publisher
  • immunohistochemistry; human
Walton R, Finlin B, Mula J, Long D, Zhu B, Fry C, et al. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol Rep. 2015;3: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:600; fig 9
Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed publisher
  • immunohistochemistry - frozen section; mouse; fig 1
Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
  • immunohistochemistry; human; 1:25
  • immunohistochemistry; rat; 1:25
  • immunohistochemistry; mouse; 1:25
Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed publisher
  • immunohistochemistry; human
Fry C, Noehren B, Mula J, Ubele M, Westgate P, Kern P, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592:2625-35 pubmed publisher
Carroll K, Bazyler C, Bernards J, Taber C, Stuart C, DeWeese B, et al. Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity. Sports (Basel). 2019;7: pubmed publisher
Sonjak V, Jacob K, Morais J, Rivera Zengotita M, Spendiff S, Spake C, et al. Fidelity of muscle fibre reinnervation modulates ageing muscle impact in elderly women. J Physiol. 2019;597:5009-5023 pubmed publisher
Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, et al. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun. 2018;: pubmed publisher
Sellers R, Mahmood S, Perumal G, Macaluso F, Kurland I. Phenotypic Modulation of Skeletal Muscle Fibers in LPIN1-Deficient Lipodystrophic ( fld) Mice. Vet Pathol. 2019;56:322-331 pubmed publisher
Cullins M, Krekeler B, Connor N. Differential impact of tongue exercise on intrinsic lingual muscles. Laryngoscope. 2018;128:2245-2251 pubmed publisher
Greschik H, Duteil D, Messaddeq N, Willmann D, Arrigoni L, Sum M, et al. The histone code reader Spin1 controls skeletal muscle development. Cell Death Dis. 2017;8:e3173 pubmed publisher
Murgia M, Toniolo L, Nagaraj N, Ciciliot S, Vindigni V, Schiaffino S, et al. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Rep. 2017;19:2396-2409 pubmed publisher
Jarosch I, Gehlert S, Jacko D, Koczulla R, Wencker M, Welte T, et al. Different Training-Induced Skeletal Muscle Adaptations in COPD Patients with and without Alpha-1 Antitrypsin Deficiency. Respiration. 2016;92:339-347 pubmed
Morton R, Oikawa S, Wavell C, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121:129-38 pubmed publisher
Khogali S, Lucas B, Ammar T, DeJong D, Barbalinardo M, Hayward L, et al. Physiological basis for muscle stiffness and weakness in a knock-in M1592V mouse model of hyperkalemic periodic paralysis. Physiol Rep. 2015;3: pubmed publisher
Scribbans T, Ma J, Edgett B, Vorobej K, Mitchell A, Zelt J, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39:1305-13 pubmed publisher
Mouisel E, Relizani K, Mille Hamard L, Denis R, Hourd C, Agbulut O, et al. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2014;307:R444-54 pubmed publisher
Ellefsen S, Vikmoen O, Zacharoff E, Rauk I, Slettaløkken G, Hammarström D, et al. Reliable determination of training-induced alterations in muscle fiber composition in human skeletal muscle using quantitative polymerase chain reaction. Scand J Med Sci Sports. 2014;24:e332-42 pubmed publisher
Scribbans T, Edgett B, Vorobej K, Mitchell A, Joanisse S, Matusiak J, et al. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS ONE. 2014;9:e98119 pubmed publisher
Malfatti E, Lehtokari V, Böhm J, De Winter J, Schäffer U, Estournet B, et al. Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol Commun. 2014;2:44 pubmed publisher
Lucas B, Ammar T, Khogali S, DeJong D, Barbalinardo M, Nishi C, et al. Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content. Physiol Genomics. 2014;46:385-97 pubmed publisher
Matthews C, Lovering R, Bowen T, Fishman P. Tetanus toxin preserves skeletal muscle contractile force and size during limb immobilization. Muscle Nerve. 2014;50:759-66 pubmed publisher
Joanne P, Hourde C, Ochala J, Caudéran Y, Medja F, Vignaud A, et al. Impaired adaptive response to mechanical overloading in dystrophic skeletal muscle. PLoS ONE. 2012;7:e35346 pubmed publisher
Rhee H, Steel C, Derksen F, Robinson N, Hoh J. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy. J Histochem Cytochem. 2009;57:787-800 pubmed publisher
Lucas C, Kang L, Hoh J. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun. 2000;272:303-8 pubmed
product information
Internal ID :
3315
Name :
6H1
Depositor Name :
Lucas, C.
Depositor Institution :
University of Sydney
Date Deposited :
9/26/07
Allow Hybridoma Distribution :
No
Cells Available (legacy) :
No
Antigen :
Myosin heavy chain, fast, 2X
Antigen Species :
Rabbit
Host Species :
mouse
Isotype :
MIgM
Isotype for catalog (legacy) :
IgM, kappa light chain
Positive Tested Species Reactivity :
Feline,Guinea Pig,Human,Mouse,Rabbit,Rat
Species Tested (legacy) :
guinea pig, rat, mouse, rabbit, cat, human skeletal muscle, horse
Initial Publication Pubmed ID :
10872844
Depositor Notes (Special Instructions) :
This is a very fragile IgM antibody. For optimum activity, we recommend these antibody products be kept at -20C or -80C either frozen in aliquots or with the addition of an equal volume of a cryoprotectant such as glycerol.
Collections :
Cytoskeleton
Search Keywords :
Lucas, Christine, Myosin heavy chain, fast, 2X, Rabbit, MIgM, Guinea Pig/Rat/Mouse/Rabbit/Feline/Human, MYH1, , AB_2314830, monoclonal
Antigen Molecular Weight :
~200 kDa
Gene :
MYH1
Uniprot ID :
Q9TSE5
Antibody Registry ID :
AB_2314830
Immunogen :
Retractor bulbi (adult rabbit) crude muscle extract muscle co-absorbed with adjuvant peptide to gold particles as immunogen carrier.
Clonality :
Monoclonal
Myeloma Strain :
NS-1
Epitope Mapped :
No
Recommended Applications :
FFPE,Immunofluorescence,Immunohistochemistry,Western Blot
Immunoblotting (legacy) :
Yes
Immunohistochemistry Pubmed IDs :
10872844 24714718 25121500 27686000 27687713 30381013 31368533
Immunofluorescence Pubmed IDs :
24687582 24901767 25211703 24965795 24725366 24590678 29168801 29243257 30580997 28614723 31373325
Western Blot Pubmed IDs :
10872844 31373325
FFPE Pubmed IDs :
24924099
Pubmed IDs :
19398607
Additional Information :
6H1 has been successfully used to stain skeletal muscle paraffin sections. Low pH antigen retrieval and pre-treatment with Proteinase K is required. See PUBMED ID: 24924099.
DSHB Growth Medium :
Iscove's
References (legacy) :
Biochem. Biophys. Res. Commun. 272, 303-308.; Eur. J. Histochem. 52(3), 179-190.; J. Histochem & Cytochem. 57(8), 787-800.
company information
Developmental Studies Hybridoma Bank
University of Iowa
http://dshb.biology.uiowa.edu
headquarters: US