Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 3h
| Chen X, Yuan J, Xue G, Campanario S, Wang D, Wang W, et al. Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun. 2021;12:5043 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:200; loading ...; fig 2f
| Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed publisher
|
- western blot; mouse; 1:250; loading ...; fig 1c
| Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton Libotte B, Dilworth F, et al. HIRA stabilizes skeletal muscle lineage identity. Nat Commun. 2021;12:3450 pubmed publisher
|
- immunohistochemistry; mouse; fig s1a
- western blot; mouse; 1:500; loading ...; fig 1d
| Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed publisher
|
- immunocytochemistry; mouse; 1:200; fig s4c
| Baghdadi M, Castel D, Machado L, Fukada S, Birk D, Relaix F, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018;557:714-718 pubmed publisher
|
- immunohistochemistry - paraffin section; dogs; 1:50; loading ...; fig st11
- immunohistochemistry - paraffin section; bovine; 1:50; loading ...; fig st11
| Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed publisher
|
- flow cytometry; human; fig 1b
- immunocytochemistry; human; fig 5c
| Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed publisher
|
- immunohistochemistry; mouse; 1:50; fig 3c
| Knopp P, Krom Y, Banerji C, Panamarova M, Moyle L, den Hamer B, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J Cell Sci. 2016;129:3816-3831 pubmed
|
- immunocytochemistry; mouse; fig s4d
| Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; fig 3
- western blot; mouse; fig 4
| Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed publisher
|
- immunocytochemistry; mouse; 1:1000; fig 3
| Cheedipudi S, Puri D, Saleh A, Gala H, Rumman M, Pillai M, et al. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res. 2015;43:6236-56 pubmed publisher
|
- immunohistochemistry; rat; 1:100
| Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed publisher
|
- immunohistochemistry - paraffin section; human; 1:50
| Alaggio R, Midrio P, Sgrò A, Piovan G, Guzzardo V, Donato R, et al. Congenital diaphragmatic hernia: focus on abnormal muscle formation. J Pediatr Surg. 2015;50:388-93 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:100
| Zhong Z, Zhao H, Mayo J, Chai Y. Different requirements for Wnt signaling in tongue myogenic subpopulations. J Dent Res. 2015;94:421-9 pubmed publisher
|
- western blot; mouse; 1:1000
| Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed publisher
|
- immunohistochemistry - frozen section; human
| Snijders T, Verdijk L, Smeets J, McKay B, Senden J, Hartgens F, et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr). 2014;36:9699 pubmed publisher
|
- immunohistochemistry - frozen section; mouse
| Esteves de Lima J, Bonnin M, Bourgeois A, Parisi A, Le Grand F, Duprez D. Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol. 2014;392:308-23 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:100
| Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed publisher
|
| Mademtzoglou D, Asakura Y, Borok M, Alonso Martin S, Mourikis P, Kodaka Y, et al. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. elife. 2018;7: pubmed publisher
|
| Alonso Martin S, Aurade F, Mademtzoglou D, Rochat A, Zammit P, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. elife. 2018;7: pubmed publisher
|
| Brandt L, Albers J, Hejhal T, Pfundstein S, Gonçalves A, Catalano A, et al. Mouse genetic background influences whether HrasG12V expression plus Cdkn2a knockdown causes angiosarcoma or undifferentiated pleomorphic sarcoma. Oncotarget. 2018;9:19753-19766 pubmed publisher
|
| Sugii H, Grimaldi A, Li J, Parada C, Vu Ho T, Feng J, et al. The Dlx5-FGF10 signaling cascade controls cranial neural crest and myoblast interaction during oropharyngeal patterning and development. Development. 2017;144:4037-4045 pubmed publisher
|
| Zhang R, Judson R, Liu D, Kast J, Rossi F. The lysine methyltransferase Ehmt2/G9a is dispensable for skeletal muscle development and regeneration. Skelet Muscle. 2016;6:22 pubmed publisher
|
| Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, et al. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem. 2011;286:5691-707 pubmed publisher
|
| Collins C, Gnocchi V, White R, Boldrin L, Perez Ruiz A, Relaix F, et al. Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS ONE. 2009;4:e4475 pubmed publisher
|
| Nagata Y, Partridge T, Matsuda R, Zammit P. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol. 2006;174:245-53 pubmed
|
| Relaix F, Montarras D, Zaffran S, Gayraud Morel B, Rocancourt D, Tajbakhsh S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol. 2006;172:91-102 pubmed
|
| Zammit P, Golding J, Nagata Y, Hudon V, Partridge T, Beauchamp J. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?. J Cell Biol. 2004;166:347-57 pubmed
|
| Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 2002;157:571-7 pubmed
|
| Beauchamp J, Heslop L, Yu D, Tajbakhsh S, Kelly R, Wernig A, et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151:1221-34 pubmed
|