product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
CD8α
catalog :
98941
clonality :
monoclonal
conjugate :
nonconjugated
clone name :
D4W2Z
reactivity :
human, mouse
application :
immunohistochemistry, immunocytochemistry, flow cytometry, immunohistochemistry - paraffin section
citations: 24
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry - paraffin section; mouse; fig 6d
Choe D, Lee E, Beeghly Fadiel A, Wilson A, Whalen M, Adunyah S, et al. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel). 2021;13: pubmed publisher
  • immunohistochemistry; mouse; 1:400; fig 2c, 2f
Wu S, Xiao Y, Wei J, Xu X, Jin X, Hu X, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9: pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig s4a
Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed publisher
  • immunohistochemistry; mouse; 1:200; loading ...; fig s15d
Ho D, Tsui Y, Chan L, Sze K, Zhang X, Cheu J, et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun. 2021;12:3684 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; fig 6
Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed publisher
  • immunohistochemistry; mouse; 1:400; fig 4d
Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed publisher
  • immunocytochemistry; human; 1:100; loading ...; fig 6a
Morel K, Sheahan A, Burkhart D, Baca S, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444-456 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 5b
Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed publisher
  • immunohistochemistry; mouse; 1:400; loading ...; fig 5e
Wang Y, Luo M, Chen Y, Wang Y, Zhang B, Ren Z, et al. ZMYND8 Expression in Breast Cancer Cells Blocks T-Lymphocyte Surveillance to Promote Tumor Growth. Cancer Res. 2021;81:174-186 pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 5f
Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed publisher
  • immunohistochemistry; mouse; 1:500; loading ...; fig 6d
Li H, Lu C, Zhang H, Hu Q, Zhang J, Cuevas I, et al. A PoleP286R mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight. 2020;5: pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:50; fig 4e
Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed publisher
  • immunohistochemistry; mouse; fig 3e
Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig 8a
Donaldson D, Bradford B, Else K, Mabbott N. Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep. 2020;10:4554 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:500; fig 5c
Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig e8d
Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; fig 3g
Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed publisher
  • immunohistochemistry - paraffin section; mouse; loading ...; fig e5c
  • flow cytometry; mouse; loading ...; fig e5b
Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed publisher
  • immunohistochemistry; mouse; loading ...; fig 4a, 4b
Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed publisher
  • immunohistochemistry; mouse; 1:50; loading ...; fig 6
Hoffman K, Villar M, Poveda C, Bottazzi M, Hotez P, Tweardy D, et al. Signal Transducer and Activator of Transcription-3 Modulation of Cardiac Pathology in Chronic Chagasic Cardiomyopathy. Front Cell Infect Microbiol. 2021;11:708325 pubmed publisher
Oba T, Long M, Keler T, Marsh H, Minderman H, Abrams S, et al. Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s. Nat Commun. 2020;11:5415 pubmed publisher
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, et al. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol. 2019;21:1604-1614 pubmed publisher
Dharmaraj N, Piotrowski S, Huang C, Newton J, Golfman L, Hanoteau A, et al. Anti-tumor immunity induced by ectopic expression of viral antigens is transient and limited by immune escape. Oncoimmunology. 2019;8:e1568809 pubmed publisher
Gibson H, McKnight B, Malysa A, Dyson G, Wiesend W, McCarthy C, et al. IFNγ PET Imaging as a Predictive Tool for Monitoring Response to Tumor Immunotherapy. Cancer Res. 2018;78:5706-5717 pubmed publisher
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.