Published Application/Species/Sample/Dilution | Reference |
---|
- western blot knockout validation; human; loading ...; fig 1h
| Miyahara K, Takano N, Yamada Y, Kazama H, Tokuhisa M, Hino H, et al. BRCA1 degradation in response to mitochondrial damage in breast cancer cells. Sci Rep. 2021;11:8735 pubmed publisher
|
- western blot; mouse; loading ...; fig 7b
| Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, et al. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6:223 pubmed publisher
|
- western blot; human; loading ...; fig 4a
| Poon A, Saini H, Sethi S, O Sullivan G, Plun Favreau H, Wray S, et al. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports. 2021;16:1276-1289 pubmed publisher
|
- western blot; human; loading ...; fig 2c
| Hung C, Lombardo P, Malik N, Brun S, Hellberg K, Van Nostrand J, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021;7: pubmed publisher
|
- western blot; human; 1:1000; loading ...; fig s2a
| Rusilowicz Jones E, Jardine J, Kallinos A, Pinto Fernandez A, Guenther F, Giurrandino M, et al. USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance. 2020;3: pubmed publisher
|
- immunoprecipitation; human; loading ...; fig 1e
- immunocytochemistry; human; loading ...; fig 2d
- western blot; human; loading ...; fig 1d
| Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed publisher
|
- western blot; human; 1:500-1:2000; loading ...; fig s2f
| Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed publisher
|
- western blot; mouse; 1:1000; loading ...; fig 4a
- western blot; human; 1:1000; loading ...; fig 4c
| Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed publisher
|
- western blot; mouse; 1:1000; loading ...; fig s2a
| Walsh T, van den Bosch M, Lewis K, Williams C, Poole A. Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep. 2018;8:14377 pubmed publisher
|
- western blot; human; loading ...; fig 5b
| Zhang Y, Nguyen D, Olzomer E, Poon G, Cole N, Puvanendran A, et al. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol. 2017;24:471-480.e4 pubmed publisher
|
- western blot; human; 1:1000; loading ...; fig 6a
| Borgia D, Malena A, Spinazzi M, Desbats M, Salviati L, Russell A, et al. Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Hum Mol Genet. 2017;26:1087-1103 pubmed publisher
|
- western blot; African green monkey; loading ...; fig 3b
| McLelland G, Lee S, McBride H, Fon E. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol. 2016;214:275-91 pubmed publisher
|
- immunohistochemistry; human; fig 2
- western blot; human; fig 2
| Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed publisher
|
- western blot; human; loading ...; fig 4a
| Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed publisher
|
- immunocytochemistry; human; loading ...; fig 1e
| Pryde K, Smith H, Chau K, Schapira A. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol. 2016;213:163-71 pubmed publisher
|
- western blot; human; fig 3
| Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed publisher
|
| Okatsu K, Sato Y, Yamano K, Matsuda N, Negishi L, Takahashi A, et al. Structural insights into ubiquitin phosphorylation by PINK1. Sci Rep. 2018;8:10382 pubmed publisher
|
| Tang M, Vranas M, Krahn A, Pundlik S, Trempe J, Fon E. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nat Commun. 2017;8:14697 pubmed publisher
|
| Puschmann A, Fiesel F, Caulfield T, Hudec R, Ando M, Truban D, et al. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain. 2017;140:98-117 pubmed publisher
|
| Ahmad T, Sundar I, Lerner C, Gerloff J, Tormos A, Yao H, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J. 2015;29:2912-29 pubmed publisher
|
| Lee S, Zhang C, Liu X. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. J Biol Chem. 2015;290:904-17 pubmed publisher
|
| Shiba Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2:1002 pubmed publisher
|