product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Nanog (D73G4) XP® Rabbit mAb
catalog :
4903
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
D73G4
reactivity :
African green monkey, common marmoset, human, mouse, rhesus macaque
application :
western blot, immunohistochemistry, immunocytochemistry, flow cytometry, chromatin immunoprecipitation, immunohistochemistry - paraffin section
citations: 68
Published Application/Species/Sample/DilutionReference
  • immunocytochemistry; rhesus macaque; 1:400; fig 2c
Rodriguez Polo I, Mißbach S, Petkov S, Mattern F, Maierhofer A, Grządzielewska I, et al. A piggyBac-based platform for genome editing and clonal rhesus macaque iPSC line derivation. Sci Rep. 2021;11:15439 pubmed publisher
  • immunocytochemistry; human; 1:1000; loading ...; fig 1b
Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, et al. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep. 2021;11:9123 pubmed publisher
  • immunocytochemistry; human; 1:400; loading ...; fig 5b
Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed publisher
  • western blot; mouse; 1:2000; loading ...; fig 4b
Li W, Zhang N, Jin C, Long M, Rajabi H, Yasumizu Y, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight. 2020;5: pubmed publisher
  • immunocytochemistry; mouse; loading ...; fig 5a
Gunne Braden A, Sullivan A, Gharibi B, Sheriff R, Maity A, Wang Y, et al. GATA3 Mediates a Fast, Irreversible Commitment to BMP4-Driven Differentiation in Human Embryonic Stem Cells. Cell Stem Cell. 2020;26:693-706.e9 pubmed publisher
  • western blot; human; loading ...; fig 1a
Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed publisher
  • western blot; human; loading ...; fig 5a
Zang M, Guo J, Liu L, Jin F, Feng X, An G, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis. 2020;9:31 pubmed publisher
  • immunocytochemistry; human; 1:400; loading ...; fig 2e
Chen Y, Li Y, Chou C, Chiew M, Huang H, Ho J, et al. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv. 2020;6:eaay0264 pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig 5d
Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed publisher
  • immunocytochemistry; human; 1:800; fig s3a
Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed publisher
  • western blot; mouse; loading ...; fig 5c
Zhan Y, Li R, Feng C, Li X, Huang S, Wang L, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2. Biomed Pharmacother. 2020;121:109602 pubmed publisher
  • western blot; human; 1:1000; loading ...
Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, et al. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. Mol Ther Oncolytics. 2019;14:299-312 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 5b
  • western blot; human; loading ...; fig 2a, 2h
Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 2b
Quintero C, Laursen K, Mongan N, Luo M, Gudas L. CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol. 2018;430:4168-4182 pubmed publisher
  • immunohistochemistry; human; 1:250; loading ...; fig 5d
Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 3b
Jin L, Vu T, Yuan G, Datta P. STRAP Promotes Stemness of Human Colorectal Cancer via Epigenetic Regulation of the NOTCH Pathway. Cancer Res. 2017;77:5464-5478 pubmed publisher
  • immunocytochemistry; human; 1:400; loading ...; fig s1
Aguisanda F, Yeh C, Chen C, Li R, Beers J, Zou J, et al. Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics. Orphanet J Rare Dis. 2017;12:120 pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig s1a
Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, et al. Differential Sarcomere and Electrophysiological Maturation of Human iPSC-Derived Cardiac Myocytes in Monolayer vs. Aggregation-Based Differentiation Protocols. Int J Mol Sci. 2017;18: pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig 1g
Uhlin E, Rönnholm H, Day K, Kele M, Tammimies K, Bölte S, et al. Derivation of human iPS cell lines from monozygotic twins in defined and xeno free conditions. Stem Cell Res. 2017;18:22-25 pubmed publisher
  • immunocytochemistry; African green monkey; 1:800; loading ...; fig 1B
  • immunocytochemistry; human; 1:800; loading ...; fig 4B
Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, et al. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS ONE. 2017;12:e0171947 pubmed publisher
  • immunocytochemistry; human; fig 2a
Bharathan S, Manian K, Aalam S, Palani D, Deshpande P, Pratheesh M, et al. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells. Biol Open. 2017;6:100-108 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 2b
  • western blot; human; 1:1000; loading ...; fig 2a
Prieto P, Fernandez Velasco M, Fernández Santos M, Sanchez P, Terrón V, Martín Sanz P, et al. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells. Front Physiol. 2016;7:548 pubmed
  • flow cytometry; human; 1:200; loading ...; fig 1b
Zhu L, Gómez Durán A, Saretzki G, Jin S, Tilgner K, Melguizo Sanchís D, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215:187-202 pubmed
  • immunohistochemistry; human; 1:200; loading ...; fig 1h
Kele M, Day K, Rönnholm H, Schuster J, Dahl N, Falk A. Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions. Stem Cell Res. 2016;17:474-478 pubmed publisher
  • western blot; human; loading ...; fig 5e
Lv D, Yu S, Ping Y, Wu H, Zhao X, Zhang H, et al. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget. 2016;7:56904-56914 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:500; loading ...; fig 1d
Baillie R, Itinteang T, Yu H, Brasch H, Davis P, Tan S. Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. J Clin Pathol. 2016;69:742-4 pubmed publisher
  • immunocytochemistry; human; 1:300; fig S1B
Stratigopoulos G, Burnett L, Rausch R, Gill R, Penn D, Skowronski A, et al. Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest. 2016;126:1897-910 pubmed publisher
  • western blot; human; loading ...; fig 1c
Xu M, Bian S, Li J, He J, Chen H, Ge L, et al. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget. 2016;7:14476-85 pubmed publisher
  • chromatin immunoprecipitation; human; 1:100; fig 5b
  • western blot; human; loading ...; fig 5c
Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed publisher
  • immunocytochemistry; human; fig s1
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports. 2016;6:200-12 pubmed publisher
  • immunocytochemistry; human; 1:500; loading ...; fig 1e
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed publisher
  • western blot; human; fig 1
Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget. 2015;6:22361-74 pubmed
  • immunohistochemistry - paraffin section; human; fig 3
  • western blot; human
Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed publisher
  • immunohistochemistry; human; 1:100; fig 5
Zhou H, Martínez H, Sun B, Li A, Zimmer M, Katsanis N, et al. Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. Stem Cell Rev. 2015;11:652-65 pubmed publisher
  • immunocytochemistry; common marmoset; 1:300; fig 2
Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed publisher
  • immunocytochemistry; human; 1:500
Wilson P, Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: neural rosettes as sentinels in candidate selection for validation assays. Peerj. 2014;2:e668 pubmed publisher
  • immunocytochemistry; human; 1:200
Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed publisher
  • immunocytochemistry; human; 1:50
Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:50; fig 7
  • western blot; mouse; 1:1000; fig 7
Piazzolla D, Palla A, Pantoja C, Canamero M, de Castro I, Ortega S, et al. Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun. 2014;5:4226 pubmed publisher
  • immunocytochemistry; human; 1:200
Krutá M, Šeneklová M, Raška J, Salykin A, Zerzankova L, Pesl M, et al. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 2014;23:2443-54 pubmed publisher
  • immunohistochemistry; human; 1:300
  • western blot; human; 1:1000
Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed publisher
  • immunocytochemistry; mouse; 1:800
Ono T, Suzuki Y, Kato Y, Fujita R, Araki T, Yamashita T, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells. PLoS ONE. 2014;9:e88346 pubmed publisher
  • western blot; human
Zhang J, Espinoza L, Kinders R, Lawrence S, Pfister T, Zhou M, et al. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32:4397-405 pubmed publisher
Aban C, Lombardi A, Neiman G, Biani M, La Greca A, Waisman A, et al. Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci Rep. 2021;11:2048 pubmed publisher
Grajcarek J, Monlong J, Nishinaka Arai Y, Nakamura M, Nagai M, Matsuo S, et al. Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. Nat Commun. 2019;10:4856 pubmed publisher
Kozono S, Lin Y, Seo H, Pinch B, Lian X, Qiu C, et al. Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun. 2018;9:3069 pubmed publisher
Ooki A, Dinalankara W, Marchionni L, Tsay J, Goparaju C, Maleki Z, et al. Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma. Oncogene. 2018;37:5967-5981 pubmed publisher
Jonikas M, Madill M, Mathy A, Zekoll T, Zois C, Wigfield S, et al. Stem cell modeling of mitochondrial parkinsonism reveals key functions of OPA1. Ann Neurol. 2018;83:915-925 pubmed publisher
Bratkovic T, Modic M, Camargo Ortega G, Drukker M, Rogelj B. Neuronal differentiation induces SNORD115 expression and is accompanied by post-transcriptional changes of serotonin receptor 2c mRNA. Sci Rep. 2018;8:5101 pubmed publisher
Ooki A, Begum A, Marchionni L, Vandenbussche C, Mao S, Kates M, et al. Arsenic promotes the COX2/PGE2-SOX2 axis to increase the malignant stemness properties of urothelial cells. Int J Cancer. 2018;143:113-126 pubmed publisher
Maiti S, Mondal S, Satyavarapu E, Mandal C. mTORC2 regulates hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation. Cell Death Dis. 2017;8:e2926 pubmed publisher
Buonocore F, Kühnen P, Suntharalingham J, Del Valle I, Digweed M, Stachelscheid H, et al. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J Clin Invest. 2017;127:1700-1713 pubmed publisher
Guo J, Hsu H, Tyan S, Li F, Shew J, Lee W, et al. Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner. Oncogene. 2017;36:2457-2471 pubmed publisher
Lillo M, Nichols C, Perry C, Runke S, Krutilina R, Seagroves T, et al. Methylparaben stimulates tumor initiating cells in ER+ breast cancer models. J Appl Toxicol. 2017;37:417-425 pubmed publisher
Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz Nogués C, et al. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Sci Rep. 2016;6:30746 pubmed publisher
Miyatake Y, Sheehy N, Ikeshita S, Hall W, Kasahara M. Anchorage-dependent multicellular aggregate formation induces CD44 high cancer stem cell-like ATL cells in an NF-κB- and vimentin-dependent manner. Cancer Lett. 2015;357:355-63 pubmed publisher
Aeckerle N, Drummer C, Debowski K, Viebahn C, Behr R. Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation. Mol Hum Reprod. 2015;21:66-80 pubmed publisher
Kregel S, Szmulewitz R, Vander Griend D. The pluripotency factor Nanog is directly upregulated by the androgen receptor in prostate cancer cells. Prostate. 2014;74:1530-43 pubmed publisher
Chen W, Liu J, Zhang L, Xu H, Guo X, Deng S, et al. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci Rep. 2014;4:5404 pubmed publisher
Miettinen M, Wang Z, McCue P, Sarlomo Rikala M, Rys J, Biernat W, et al. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. 2014;38:410-20 pubmed publisher
Vuoristo S, Toivonen S, Weltner J, Mikkola M, Ustinov J, Trokovic R, et al. A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation. PLoS ONE. 2013;8:e76205 pubmed publisher
Rybak A, Tang D. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal. 2013;25:2734-42 pubmed publisher
Romorini L, Riva D, Bluguermann C, Videla Richardson G, Scassa M, Sevlever G, et al. Effect of antibiotics against Mycoplasma sp. on human embryonic stem cells undifferentiated status, pluripotency, cell viability and growth. PLoS ONE. 2013;8:e70267 pubmed publisher
Kregel S, Kiriluk K, Rosen A, Cai Y, Reyes E, Otto K, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS ONE. 2013;8:e53701 pubmed publisher
Singh S, Trevino J, Bora Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73 pubmed publisher
Polak U, Hirsch C, Ku S, GOTTESFELD J, Dent S, Napierala M. Selecting and isolating colonies of human induced pluripotent stem cells reprogrammed from adult fibroblasts. J Vis Exp. 2012;: pubmed publisher
Chae H, Lee M, Broxmeyer H. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G(1)/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells. 2012;30:140-9 pubmed publisher
Ledur P, Villodre E, Paulus R, Cruz L, Flores D, Lenz G. Extracellular ATP reduces tumor sphere growth and cancer stem cell population in glioblastoma cells. Purinergic Signal. 2012;8:39-48 pubmed publisher
product information
SKU :
4903S
Product-Name :
Nanog (D73G4) XP® Rabbit mAb
Size :
100 ul
Price-(USD) :
260 USD
Species-x-Reactivity :
H, (Mk)
Applications :
Flow cytometry
Product-Category :
Developmental Biology
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
42
Host :
Rabbit
Target :
Nanog
Primary-Protein :
NANOG
Alt-Names :
Homeobox protein NANOG,Homeobox transcription factor Nanog,NANOG,Nanog homeobox,hNanog,homeobox transcription factor Nanog-delta 48
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.