product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Tuberin/TSC2 (D93F12) XP® Rabbit mAb
catalog :
4308
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
D93F12
reactivity :
human, mouse, rat
application :
western blot, immunocytochemistry, immunoprecipitation, western blot knockout validation
citations: 48
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; mouse; loading ...; fig 3g
Chen X, Miao M, Zhou M, Chen J, Li D, Zhang L, et al. Poly-L-arginine promotes asthma angiogenesis through induction of FGFBP1 in airway epithelial cells via activation of the mTORC1-STAT3 pathway. Cell Death Dis. 2021;12:761 pubmed publisher
  • western blot knockout validation; human; loading ...; fig 3e
Alesi N, Akl E, Khabibullin D, Liu H, Nidhiry A, Garner E, et al. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat Commun. 2021;12:4245 pubmed publisher
  • western blot knockout validation; mouse; 1:1000; loading ...; fig 4j
Chen G, Xie W, Nah J, Sauvat A, Liu P, Pietrocola F, et al. 3,4-Dimethoxychalcone induces autophagy through activation of the transcription factors TFE3 and TFEB. EMBO Mol Med. 2019;11:e10469 pubmed publisher
  • western blot knockout validation; mouse; loading ...; fig 1a
Jacobs B, McNally R, Kim K, Blanco R, Privett R, You J, et al. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J Biol Chem. 2017;292:6987-6997 pubmed publisher
  • western blot knockout validation; human; 1:1000; loading ...; fig s3h
Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed publisher
  • immunoprecipitation; rat; loading ...; fig 4c
  • western blot; rat; loading ...; fig 4c
  • western blot knockout validation; human; loading ...; fig 1a
  • immunoprecipitation; human; loading ...; fig 2c
Fettweis G, Di Valentin E, L homme L, Lassence C, Dequiedt F, Fillet M, et al. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochim Biophys Acta Mol Cell Res. 2017;1864:113-124 pubmed publisher
  • immunocytochemistry; human; 1:200; loading ...; fig s4a
  • western blot; human; 1:2000; loading ...; fig s9a
  • western blot knockout validation; mouse; 1:2000; loading ...; fig s10a
  • immunocytochemistry; mouse; 1:200; loading ...; fig s6b
Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed publisher
  • western blot knockout validation; mouse; 1:2000; fig 3
  • immunocytochemistry; mouse; fig 5
  • western blot; human; 1:2000; fig s1
Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed publisher
  • western blot knockout validation; mouse; fig s1
  • western blot; human; fig s1
Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed publisher
  • western blot; mouse; loading ...; fig 2a, 3b
Han H, Kim S, Kim Y, Jang S, Kwon Y, Choi D, et al. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab. 2022;55:101402 pubmed publisher
  • western blot; human; loading ...
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, et al. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun. 2021;12:4928 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig s12
Zhang T, He M, Zhao L, Qin S, Zhu Z, Du X, et al. HDAC6 regulates primordial follicle activation through mTOR signaling pathway. Cell Death Dis. 2021;12:559 pubmed publisher
  • western blot; human; loading ...; fig 4a
Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed publisher
  • western blot; human; loading ...; fig 2a
Nnah I, Wang B, Saqcena C, Weber G, Bonder E, Bagley D, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15:151-164 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 3c
Dai S, Dulcey A, Hu X, Wassif C, Porter F, Austin C, et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 2017;13:1435-1451 pubmed publisher
  • immunocytochemistry; human; 1:800; loading ...; fig 5g
  • western blot; human; 1:1000; loading ...; fig 5i
Bakula D, Müller A, Zuleger T, Takacs Z, Franz Wachtel M, Thost A, et al. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun. 2017;8:15637 pubmed publisher
  • western blot; human; loading ...; fig 5c
Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed publisher
  • western blot; rat; loading ...; fig 4c
Ercan E, Han J, Di Nardo A, Winden K, Han M, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681-697 pubmed publisher
  • western blot; mouse; loading ...; fig 1b
Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed publisher
  • western blot; mouse; loading ...; fig 6b
Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed publisher
  • western blot; mouse; 1:1000; fig 4
  • western blot; human; 1:1000; fig 4
Bento C, Ashkenazi A, Jimenez Sanchez M, Rubinsztein D. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat Commun. 2016;7:11803 pubmed publisher
  • western blot; mouse; 1:1000; fig 3
Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  • immunocytochemistry; human; 1:1000; fig 2a
  • western blot; human; 1:1000; fig 2e
  • immunocytochemistry; mouse; 1:1000; fig 2c
  • western blot; mouse; 1:1000; fig 1s3i
Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed publisher
  • western blot; human; fig 5
  • western blot; mouse; fig 5
Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed publisher
  • western blot; mouse; 1:1000; fig 2b
Yan Y, Ollila S, Wong I, Vallenius T, Palvimo J, Vaahtomeri K, et al. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun. 2015;6:8979 pubmed publisher
  • western blot; human; fig 2
Ye Z, Al Aidaroos A, Park J, Yuen H, Zhang S, Gupta A, et al. PRL-3 activates mTORC1 in Cancer Progression. Sci Rep. 2015;5:17046 pubmed publisher
  • western blot; mouse; 1:2500; fig 5
Das R, Xu S, Nguyen T, Quan X, Choi S, Kim S, et al. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis. J Biol Chem. 2015;290:30830-42 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 5d
Zhang S, Schneider L, Vick B, Grunert M, Jeremias I, Menche D, et al. Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget. 2015;6:43508-28 pubmed publisher
  • immunocytochemistry; human; 1:800; fig 5
Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed publisher
  • western blot; human; fig 5
Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed publisher
  • western blot; human; 1:1000
Espana Agusti J, Tuveson D, Adams D, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5:11061 pubmed publisher
  • western blot; rat; 1:1000
Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed publisher
  • western blot; human
Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem. 2015;290:6810-24 pubmed publisher
  • western blot; mouse; fig 5
Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed publisher
  • western blot; mouse; 1:5000; fig 2
Bartley C, O Keefe R, Bordey A. FMRP S499 is phosphorylated independent of mTORC1-S6K1 activity. PLoS ONE. 2014;9:e96956 pubmed publisher
Amemiya Y, Nakamura N, Ikeda N, Sugiyama R, Ishii C, Maki M, et al. Amino Acid-Mediated Intracellular Ca2+ Rise Modulates mTORC1 by Regulating the TSC2-Rheb Axis through Ca2+/Calmodulin. Int J Mol Sci. 2021;22: pubmed publisher
Marques P, Kamitz A, Bartolomé A, Burillo J, Martínez H, Jimenez B, et al. Essential role of glucokinase in the protection of pancreatic β cells to the glucose energetic status. Cell Death Discov. 2019;5:138 pubmed publisher
Peruchetti D, Silva Aguiar R, Siqueira G, Dias W, Caruso Neves C. High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem. 2018;293:11388-11400 pubmed publisher
Jia J, Abudu Y, Claude Taupin A, Gu Y, Kumar S, Choi S, et al. Galectins Control mTOR in Response to Endomembrane Damage. Mol Cell. 2018;70:120-135.e8 pubmed publisher
Rubio A, Luoni M, Giannelli S, Radice I, Iannielli A, Cancellieri C, et al. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming. Sci Rep. 2016;6:37540 pubmed publisher
Zhang J, Wang J, Xu J, Lu Y, Jiang J, Wang L, et al. Curcumin targets the TFEB-lysosome pathway for induction of autophagy. Oncotarget. 2016;7:75659-75671 pubmed publisher
Ito S, Tanaka Y, Oshino R, Aiba K, Thanasegaran S, Nishio N, et al. GADD34 inhibits activation-induced apoptosis of macrophages through enhancement of autophagy. Sci Rep. 2015;5:8327 pubmed publisher
Guan B, Krokowski D, Majumder M, Schmotzer C, Kimball S, Merrick W, et al. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2?. J Biol Chem. 2014;289:12593-611 pubmed publisher
Wu J, Shin J, Xie D, Wang H, Gao J, Zhong X. Tuberous sclerosis 1 promotes invariant NKT cell anergy and inhibits invariant NKT cell-mediated antitumor immunity. J Immunol. 2014;192:2643-50 pubmed publisher
Munkley J, Rajan P, Lafferty N, Dalgliesh C, Jackson R, Robson C, et al. A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget. 2014;5:131-9 pubmed
Dibble C, Elis W, Menon S, Qin W, Klekota J, Asara J, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell. 2012;47:535-46 pubmed publisher
Goto J, Talos D, Klein P, Qin W, Chekaluk Y, Anderl S, et al. Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci U S A. 2011;108:E1070-9 pubmed publisher
Park J, Arakawa Takeuchi S, Jinno S, Okayama H. Rho-associated kinase connects a cell cycle-controlling anchorage signal to the mammalian target of rapamycin pathway. J Biol Chem. 2011;286:23132-41 pubmed publisher
product information
SKU :
4308S
Product-Name :
Tuberin/TSC2 (D93F12) XP® Rabbit mAb
Size :
100 ul
Price-(USD) :
260 USD
Species-x-Reactivity :
H, M, R, Hm, Mk
Applications :
Immunofluorescence (Immunocytochemistry)
Product-Category :
PI3K / Akt Signaling
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
200
Host :
Rabbit
Target :
Tuberin/TSC2
Primary-Protein :
TSC2
Alt-Names :
FLJ43106,LAM,TSC2,TSC4,Tuberin,Tuberous sclerosis 2 protein,tuberous sclerosis 2
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.