product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Parkin (Prk8) Mouse mAb
catalog :
4211
clonality :
monoclonal
host :
mouse
conjugate :
nonconjugated
clone name :
PRK8
reactivity :
human, mouse, rat
application :
western blot, immunocytochemistry, immunoprecipitation, western blot knockout validation, immunohistochemistry knockout validation
citations: 40
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry knockout validation; mouse; fig 3
  • western blot knockout validation; mouse; fig 3
Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed publisher
  • western blot knockout validation; human; fig 6a
Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed publisher
  • western blot knockout validation; rat; 1:1000; fig 1a
Gemechu J, Sharma A, Yu D, Xie Y, Merkel O, Moszczynska A. Characterization of Dopaminergic System in the Striatum of Young Adult Park2-/- Knockout Rats. Sci Rep. 2018;8:1517 pubmed publisher
  • western blot; mouse; 1:500; fig sy5y
López Doménech G, Howden J, Covill Cooke C, Morfill C, Patel J, Bürli R, et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 2021;40:e100715 pubmed publisher
  • western blot; mouse; loading ...; fig 7b
Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, et al. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6:223 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 5c
Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed publisher
  • western blot; rat; fig 7f
Huo S, Shi W, Ma H, Yan D, Luo P, Guo J, et al. Alleviation of Inflammation and Oxidative Stress in Pressure Overload-Induced Cardiac Remodeling and Heart Failure via IL-6/STAT3 Inhibition by Raloxifene. Oxid Med Cell Longev. 2021;2021:6699054 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4
Kano M, Takanashi M, Oyama G, Yoritaka A, Hatano T, Shiba Fukushima K, et al. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ Parkinsons Dis. 2020;6:33 pubmed publisher
  • western blot; rat; 1:50; loading ...; fig 5c
Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY). 2020;12:25035-25059 pubmed publisher
  • western blot; rat; loading ...; fig 5a
He Q, Li Z, Meng C, Wu J, Zhao Y, Zhao J. Parkin-Dependent Mitophagy is Required for the Inhibition of ATF4 on NLRP3 Inflammasome Activation in Cerebral Ischemia-Reperfusion Injury in Rats. Cells. 2019;8: pubmed publisher
  • western blot; human; 1:1000; fig 4
Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig s6c
Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed publisher
  • western blot; mouse; loading ...; fig 2a
Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed publisher
  • western blot; mouse; loading ...; fig 7a
Upadhyay M, Agarwal S, Bhadauriya P, Ganesh S. Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol Dis. 2017;100:39-51 pubmed publisher
  • western blot; mouse; fig 3a
Ugun Klusek A, Tatham M, Elkharaz J, Constantin Teodosiu D, Lawler K, Mohamed H, et al. Continued 26S proteasome dysfunction in mouse brain cortical neurons impairs autophagy and the Keap1-Nrf2 oxidative defence pathway. Cell Death Dis. 2017;8:e2531 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 1b
Wei Y, Chiang W, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224-238.e10 pubmed publisher
  • immunocytochemistry; human; 1:1000; fig 2a
Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2a
Puschmann A, Fiesel F, Caulfield T, Hudec R, Ando M, Truban D, et al. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain. 2017;140:98-117 pubmed publisher
  • western blot; human; loading ...; fig 5b
Cheng M, Liu L, Lao Y, Liao W, Liao M, Luo X, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7:42274-42287 pubmed publisher
  • immunocytochemistry; human; fig 1
  • western blot; human; fig 1
Shi J, Fung G, Deng H, Zhang J, Fiesel F, Springer W, et al. NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death Dis. 2015;6:e1943 pubmed publisher
  • immunoprecipitation; human
  • immunocytochemistry; human; fig 9
Aimé P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli Daley L, et al. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci. 2015;35:10731-49 pubmed publisher
  • western blot; mouse; 1:1000
Kubli D, Cortez M, Moyzis A, Najor R, Lee Y, Gustafsson Ã. PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE. 2015;10:e0130707 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 7
Van Rompuy A, Oliveras Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener. 2015;10:23 pubmed publisher
  • western blot; rat; 1:1000
Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem. 2014;128:764-75 pubmed publisher
Kim H, Ham S, Jo M, Lee G, Lee Y, Shin J, et al. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation. Int J Mol Sci. 2017;18: pubmed publisher
Gong Y, Schumacher S, Wu W, Tang F, Beroukhim R, Chan T. Pan-Cancer Analysis Links PARK2 to BCL-XL-Dependent Control of Apoptosis. Neoplasia. 2017;19:75-83 pubmed publisher
Im E, Yoo L, Hyun M, Shin W, Chung K. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol. 2016;6: pubmed publisher
Sargsyan A, Cai J, Fandino L, Labasky M, Forostyan T, Colosimo L, et al. Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor. Sci Rep. 2015;5:12397 pubmed publisher
Lee S, Zhang C, Liu X. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. J Biol Chem. 2015;290:904-17 pubmed publisher
Drew B, Ribas V, Le J, Henstridge D, Phun J, Zhou Z, et al. HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes. 2014;63:1488-505 pubmed publisher
Brot S, Auger C, Bentata R, Rogemond V, Ménigoz S, Chounlamountri N, et al. Collapsin response mediator protein 5 (CRMP5) induces mitophagy, thereby regulating mitochondrion numbers in dendrites. J Biol Chem. 2014;289:2261-76 pubmed publisher
Zanon A, Rakovic A, Blankenburg H, Doncheva N, Schwienbacher C, Serafin A, et al. Profiling of Parkin-binding partners using tandem affinity purification. PLoS ONE. 2013;8:e78648 pubmed publisher
Manzanillo P, Ayres J, Watson R, Collins A, Souza G, Rae C, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013;501:512-6 pubmed publisher
Burchell V, Nelson D, Sanchez Martinez A, Delgado Camprubi M, Ivatt R, Pogson J, et al. The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci. 2013;16:1257-65 pubmed publisher
Wang D, Garden G, Kinoshita C, Wyles C, Babazadeh N, Sopher B, et al. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci. 2013;33:1357-65 pubmed publisher
Shiba Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2:1002 pubmed publisher
Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G. Microtubule destabilization is shared by genetic and idiopathic Parkinson's disease patient fibroblasts. PLoS ONE. 2012;7:e37467 pubmed publisher
de Pablo Latorre R, Saide A, Polishhuck E, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet. 2012;21:1770-81 pubmed publisher
Chan N, Salazar A, Pham A, Sweredoski M, Kolawa N, Graham R, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20:1726-37 pubmed publisher
von Coelln R, Thomas B, Andrabi S, Lim K, Savitt J, Saffary R, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci. 2006;26:3685-96 pubmed
product information
SKU :
4211S
Product-Name :
Parkin (Prk8) Mouse mAb
Size :
100 ul
Price-(USD) :
235 USD
Species-x-Reactivity :
H, M, R
Applications :
Immunoprecipitation
Product-Category :
Neuroscience
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
50
Host :
Mouse
Target :
parkin
Primary-Protein :
PARK2
Alt-Names :
AR-JP,E3 ubiquitin ligase,E3 ubiquitin-protein ligase parkin,LPRS2,PARK2,PDJ,PRKN,PRKN2,Parkinson disease (autosomal recessive, juvenile) 2, parkin,Parkinson disease protein 2,Parkinson juvenile disease protein 2,parkin,parkin 2
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.