product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Rig-I (D14G6) Rabbit mAb
catalog :
3743
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
D14G6
reactivity :
African green monkey, human, mouse, rat
application :
western blot, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section, western blot knockout validation
citations: 44
Published Application/Species/Sample/DilutionReference
  • western blot knockout validation; mouse; loading ...; fig s8e
Wang W, Wang Y, Qu C, Wang S, Zhou J, Cao W, et al. The RNA genome of hepatitis E virus robustly triggers an antiviral interferon response. Hepatology. 2018;67:2096-2112 pubmed publisher
  • immunohistochemistry - paraffin section; rat; 1:100; loading ...; fig 1n
  • western blot; rat; 1:1000; loading ...; fig 1i
Wang P, Li N, Wang X, Chen J, Geng C, Liu Z, et al. RIG-I, a novel DAMPs sensor for myoglobin activates NF-κB/caspase-3 signaling in CS-AKI model. Mil Med Res. 2021;8:37 pubmed publisher
  • western blot; human; 1:1000; loading ...
Guo G, Gao M, Gao X, Zhu B, Huang J, Luo K, et al. SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response. Signal Transduct Target Ther. 2021;6:119 pubmed publisher
  • western blot; human; loading ...; fig 6s1a
Colpitts C, Ridewood S, Schneiderman B, Warne J, Tabata K, Ng C, et al. Hepatitis C virus exploits cyclophilin A to evade PKR. elife. 2020;9: pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 3d
Szymura S, Bernal G, Wu L, Zhang Z, Crawley C, Voce D, et al. DDX39B interacts with the pattern recognition receptor pathway to inhibit NF-κB and sensitize to alkylating chemotherapy. BMC Biol. 2020;18:32 pubmed publisher
  • western blot; mouse; loading ...; fig s4f
Liu Y, You Y, Lu Z, Yang J, Li P, Liu L, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science. 2019;365:1171-1176 pubmed publisher
  • western blot; human; loading ...; fig 2h
Zhang W, Wang G, Xu Z, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;: pubmed publisher
  • western blot; mouse; loading ...; fig s3a
Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed publisher
  • western blot; mouse; loading ...
Witteveldt J, Knol L, Macias S. MicroRNA-deficient mouse embryonic stem cells acquire a functional interferon response. elife. 2019;8: pubmed publisher
  • western blot; mouse; loading ...; fig 7e
Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed publisher
  • western blot; human; loading ...; fig s6x
Liu Q, Wu Y, Qin Y, Hu J, Xie W, Qin F, et al. Broad and diverse mechanisms used by deubiquitinase family members in regulating the type I interferon signaling pathway during antiviral responses. Sci Adv. 2018;4:eaar2824 pubmed publisher
  • western blot; human; loading ...; fig 3f
Ghosh R, Roy S, Franco S. PARP1 depletion induces RIG-I-dependent signaling in human cancer cells. PLoS ONE. 2018;13:e0194611 pubmed publisher
  • western blot; mouse; loading ...; fig 2c
Kazak L, Chouchani E, Stavrovskaya I, Lu G, Jedrychowski M, Egan D, et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A. 2017;114:7981-7986 pubmed publisher
  • immunocytochemistry; human; 1:500; loading ...; fig 3f
  • western blot; human; 1:500; loading ...; fig s5f
  • immunoprecipitation; mouse; loading ...; fig 4f
  • western blot; mouse; 1:500; loading ...; fig 3b
Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed publisher
  • western blot; African green monkey; loading ...; fig 1c
  • western blot; mouse; loading ...; fig 1c
Xu L, Yu D, Fan Y, Peng L, Wu Y, Yao Y. Loss of RIG-I leads to a functional replacement with MDA5 in the Chinese tree shrew. Proc Natl Acad Sci U S A. 2016;113:10950-5 pubmed publisher
  • western blot; human; loading ...; fig 7c
Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, et al. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J Neuroinflammation. 2016;13:209 pubmed publisher
  • western blot; mouse; loading ...; fig 3d
Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci U S A. 2016;113:9581-6 pubmed publisher
  • western blot; human; fig 1
Hou Z, Zhang J, Han Q, Su C, Qu J, Xu D, et al. Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a. Sci Rep. 2016;6:26150 pubmed publisher
  • western blot; human; loading ...; fig 1f
Sanchez David R, Combredet C, Sismeiro O, Dillies M, Jagla B, Coppée J, et al. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. elife. 2016;5:e11275 pubmed publisher
  • western blot; human
Panas M, Kedersha N, McInerney G. Methods for the characterization of stress granules in virus infected cells. Methods. 2015;90:57-64 pubmed publisher
  • western blot; mouse; fig 1
West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed publisher
  • immunoprecipitation; human; fig 3
Liedmann S, Hrincius E, Guy C, Anhlan D, Dierkes R, Carter R, et al. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat Commun. 2014;5:5645 pubmed publisher
  • western blot; mouse
Yang S, Deng P, Zhu Z, Zhu J, Wang G, Zhang L, et al. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. J Immunol. 2014;193:3436-45 pubmed publisher
  • western blot; human
Chattergoon M, Latanich R, Quinn J, Winter M, Buckheit R, Blankson J, et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog. 2014;10:e1004082 pubmed publisher
  • western blot; human; 1:1,000
Xia M, Gonzalez P, Li C, Meng G, Jiang A, Wang H, et al. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J Virol. 2014;88:5152-64 pubmed publisher
Wienert B, Shin J, Zelin E, Pestal K, Corn J. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol. 2018;16:e2005840 pubmed publisher
Zhang Y, Dittmer D, Mieczkowski P, Host K, Fusco W, Duncan J, et al. RIG-I Detects Kaposi's Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner. MBio. 2018;9: pubmed publisher
Chen C, Fan W, Li J, Zheng W, Zhang S, Yang L, et al. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus. Front Cell Infect Microbiol. 2018;8:127 pubmed publisher
Zhou P, Ding X, Wan X, Liu L, Yuan X, Zhang W, et al. MLL5 suppresses antiviral innate immune response by facilitating STUB1-mediated RIG-I degradation. Nat Commun. 2018;9:1243 pubmed publisher
Tan P, He L, Cui J, Qian C, Cao X, Lin M, et al. Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling. Mol Cell. 2017;68:293-307.e5 pubmed publisher
Huang C, Kolokoltsova O, Mateer E, Koma T, Paessler S. Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells. J Virol. 2017;91: pubmed publisher
Mura M, Combredet C, Najburg V, Sanchez David R, Tangy F, Komarova A. Nonencapsidated 5' Copy-Back Defective Interfering Genomes Produced by Recombinant Measles Viruses Are Recognized by RIG-I and LGP2 but Not MDA5. J Virol. 2017;91: pubmed publisher
Zhang H, Ye H, Liu S, Deng C, Li X, Shi P, et al. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. J Virol. 2017;91: pubmed publisher
Lamborn I, Jing H, Zhang Y, DRUTMAN S, Abbott J, Munir S, et al. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med. 2017;214:1949-1972 pubmed publisher
Su C, Tseng C, Yu C, Lai M. SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. J Virol. 2016;90:4308-4319 pubmed publisher
Painter M, Morrison J, Zoecklein L, Rinkoski T, Watzlawik J, Papke L, et al. Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity. PLoS Pathog. 2015;11:e1005311 pubmed publisher
Yuan D, Xia M, Meng G, Xu C, Song Y, Wei J. Anti-angiogenic efficacy of 5'-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs. Oncotarget. 2015;6:29664-74 pubmed publisher
Dupuis Maurin V, Brinza L, Baguet J, Plantamura E, Schicklin S, Chambion S, et al. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway. PLoS ONE. 2015;10:e0118551 pubmed publisher
Kolokoltsova O, Grant A, Huang C, Smith J, Poussard A, Tian B, et al. RIG-I enhanced interferon independent apoptosis upon Junin virus infection. PLoS ONE. 2014;9:e99610 pubmed publisher
Fan Y, Mao R, Yu Y, Liu S, Shi Z, Cheng J, et al. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J Exp Med. 2014;211:313-28 pubmed publisher
Chiba Y, Mizoguchi I, Mitobe K, Higuchi K, Nagai H, Nishigori C, et al. IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with a TLR3 agonist poly(I:C) partly in a TRAIL-dependent manner. PLoS ONE. 2013;8:e76159 pubmed publisher
Ordureau A, Enesa K, Nanda S, Le François B, Peggie M, Prescott A, et al. DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA. J Biol Chem. 2013;288:24569-80 pubmed publisher
Jin R, Zhu W, Cao S, Chen R, Jin H, Liu Y, et al. Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS ONE. 2013;8:e52909 pubmed publisher
Wang Y, Tong X, Ye X. Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. J Immunol. 2012;189:5304-13 pubmed publisher
product information
SKU :
3743S
Product-Name :
Rig-I (D14G6) Rabbit mAb
Size :
100 ul
Price-(USD) :
235 USD
Species-x-Reactivity :
H, M, R, Mk
Applications :
Immunoprecipitation
Product-Category :
Immunology and Inflammation
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
102
Host :
Rabbit
Target :
RIG-I
Primary-Protein :
DDX58
Alt-Names :
DDX58,DEAD (Asp-Glu-Ala-Asp) box polypeptide 58,DEAD box protein 58,DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide,DKFZp434J1111,DKFZp686N19181,FLJ13599,Probable ATP-dependent RNA helicase DDX58,RIG-1,RIG-I,RNA helicase RIG-I,Retinoic acid-inducible gene 1 protein,Retinoic acid-inducible gene I protein,retinoic acid inducible gene I
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.