product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
TCF8/ZEB1 (D80D3) Rabbit mAb
catalog :
3396
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
D80D3
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section, other
citations: 76
Published Application/Species/Sample/DilutionReference
  • western blot; human; fig 10c
Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed publisher
  • western blot; human; loading ...; fig 6c, 6f
Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 6b
Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 2g: 2h, 2i
Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  • western blot; human; loading ...; fig 5a
Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4f
Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4b, s1b
Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed publisher
  • western blot; human; loading ...; fig 2a
Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed publisher
  • western blot; human; loading ...; fig 3d
Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4c
Smestad J, Maher L. Master regulator analysis of paragangliomas carrying SDHx, VHL, or MAML3 genetic alterations. BMC Cancer. 2019;19:619 pubmed publisher
  • western blot; human; loading ...; fig 2a
Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed publisher
  • western blot; human; 1:500; loading ...; fig s2a
Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed publisher
  • western blot; human; loading ...; fig 3b
Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed publisher
  • western blot; human; 1:1000; fig s6i
Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 7j
Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig ex7b
Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed publisher
  • western blot; human; loading ...; fig 2e
Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed publisher
  • western blot; human; 1:1000; loading ...
Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  • immunocytochemistry; human; 1:100; fig 3b
Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 6d
Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed publisher
  • western blot; human; loading ...
Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed publisher
  • western blot; human; loading ...; fig 7d
Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
  • immunohistochemistry; mouse; loading ...; fig 8l
Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed publisher
  • western blot; human; 1:1000; fig s3b
Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed publisher
  • western blot; human; loading ...; fig 6a
Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed publisher
  • western blot; human; fig 5
Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed publisher
  • western blot; human; 1:1000; fig 2
Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep. 2016;6:20670 pubmed publisher
  • western blot; human; fig 6
Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed publisher
  • western blot; human; loading ...; fig 8b
Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun. 2015;6:8899 pubmed publisher
  • western blot; mouse; fig 1d
Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed publisher
  • western blot; human; fig 7a
Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed publisher
  • western blot; human; 1:1000; fig 5
Zhu C, Chen C, Huang J, Zhang H, Zhao X, Deng R, et al. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res. 2015;43:7945-60 pubmed publisher
  • western blot; human; 1:1000; fig 2
Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  • other; human; loading ...; fig 4a, 4d
Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed publisher
  • western blot; human; fig 3
Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed publisher
  • immunohistochemistry - paraffin section; mouse
  • western blot; mouse
Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed publisher
  • western blot; human; fig 3
Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed publisher
  • immunocytochemistry; human
Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed publisher
  • western blot; human; fig 3
Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed publisher
  • western blot; human; fig 1
Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  • western blot; human
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed publisher
  • western blot; human
Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed publisher
  • western blot; mouse; fig 2e
Feuerborn A, Mathow D, Srivastava P, Gretz N, Grone H. Basonuclin-1 modulates epithelial plasticity and TGF-?1-induced loss of epithelial cell integrity. Oncogene. 2015;34:1185-95 pubmed publisher
  • western blot; human
Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed publisher
  • western blot; human
Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed publisher
Monteleone L, Speciale A, Valenti G, Traverso N, Ravera S, Garbarino O, et al. PKCα Inhibition as a Strategy to Sensitize Neuroblastoma Stem Cells to Etoposide by Stimulating Ferroptosis. Antioxidants (Basel). 2021;10: pubmed publisher
Deng W, Fernandez A, McLaughlin S, Klinke D. WNT1-inducible signaling pathway protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition. J Biol Chem. 2019;294:5261-5280 pubmed publisher
Sanawar R, Mohan Dan V, Santhoshkumar T, Kumar R, Pillai M. Estrogen receptor-α regulation of microRNA-590 targets FAM171A1-a modifier of breast cancer invasiveness. Oncogenesis. 2019;8:5 pubmed publisher
Roh V, Abramowski P, Hiou Feige A, Cornils K, Rivals J, Zougman A, et al. Cellular Barcoding Identifies Clonal Substitution as a Hallmark of Local Recurrence in a Surgical Model of Head and Neck Squamous Cell Carcinoma. Cell Rep. 2018;25:2208-2222.e7 pubmed publisher
Ooki A, Begum A, Marchionni L, Vandenbussche C, Mao S, Kates M, et al. Arsenic promotes the COX2/PGE2-SOX2 axis to increase the malignant stemness properties of urothelial cells. Int J Cancer. 2018;143:113-126 pubmed publisher
Li Y, Liang Y, Sang Y, Song X, Zhang H, Liu Y, et al. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis. 2018;9:14 pubmed publisher
Song K, Niederst M, Lochmann T, Hata A, Kitai H, Ham J, et al. Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. Clin Cancer Res. 2018;24:197-208 pubmed publisher
Kessler T, Wobst J, Wolf B, Eckhold J, Vilne B, Hollstein R, et al. Functional Characterization of the GUCY1A3 Coronary Artery Disease Risk Locus. Circulation. 2017;136:476-489 pubmed publisher
Smigiel J, Parameswaran N, Jackson M. Potent EMT and CSC Phenotypes Are Induced By Oncostatin-M in Pancreatic Cancer. Mol Cancer Res. 2017;15:478-488 pubmed publisher
Lee N, Lee J, Kim W, Yun S, Youn Y, Park C, et al. Promoter methylation of PCDH10 by HOTAIR regulates the progression of gastrointestinal stromal tumors. Oncotarget. 2016;7:75307-75318 pubmed publisher
Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, et al. SHP-2-upregulated ZEB1 is important for PDGFRα-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 2016;35:5641-5652 pubmed publisher
Park S, Korm S, Chung H, Choi S, Jang J, Cho S, et al. RAP80 regulates epithelial-mesenchymal transition related with metastasis and malignancy of cancer. Cancer Sci. 2016;107:267-73 pubmed publisher
Sun K, Zeng T, Huang D, Liu Z, Huang S, Liu J, et al. MicroRNA-431 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the ZEB1-mediated epithelial-mensenchymal transition. FEBS Open Bio. 2015;5:900-7 pubmed publisher
Shah P, Beverly L. Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 2015;6:17725-37 pubmed
Han Y, Ye J, Wu D, Wu P, Chen Z, Chen J, et al. LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer. 2014;14:932 pubmed publisher
Tseng C, Hong Y, Chang H, Yu T, Hung T, Hou M, et al. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules. 2014;19:17464-77 pubmed publisher
Subramani R, Lopez Valdez R, Salcido A, Boopalan T, Arumugam A, Nandy S, et al. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma. Exp Mol Med. 2014;46:e117 pubmed publisher
Shah P, Lockwood W, Saurabh K, Kurlawala Z, Shannon S, Waigel S, et al. Ubiquilin1 represses migration and epithelial-to-mesenchymal transition of human non-small cell lung cancer cells. Oncogene. 2015;34:1709-17 pubmed publisher
Marín Aguilera M, Codony Servat J, Reig O, Lozano J, Fernandez P, Pereira M, et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther. 2014;13:1270-84 pubmed publisher
Patel K, Kollory A, Takashima A, Sarkar S, Faller D, Ghosh S. MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 2014;347:54-64 pubmed publisher
Hu Y, Li S, Yang M, Yan C, Fan D, Zhou Y, et al. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014;143:287-99 pubmed publisher
Kim J, Wu L, Zhao J, Jin H, Yu J. TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene. 2014;33:5183-92 pubmed publisher
Ding W, Dang H, You H, Steinway S, Takahashi Y, Wang H, et al. miR-200b restoration and DNA methyltransferase inhibitor block lung metastasis of mesenchymal-phenotype hepatocellular carcinoma. Oncogenesis. 2012;1:e15 pubmed publisher
Morris L, Kaufman A, Gong Y, Ramaswami D, Walsh L, Turcan S, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45:253-61 pubmed publisher
Liang Y, Wang Q, Zhou C, Yin Q, He M, Yu X, et al. MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34:713-22 pubmed publisher
Yokobori T, Suzuki S, Tanaka N, Inose T, Sohda M, Sano A, et al. MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci. 2013;104:48-54 pubmed publisher
Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 2012;31:4923-34 pubmed publisher
Byles V, Zhu L, Lovaas J, Chmilewski L, Wang J, Faller D, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31:4619-29 pubmed publisher
Sun Y, Wang B, Leong K, Yue P, Li L, Jhunjhunwala S, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72:527-36 pubmed publisher
Kurasawa Y, Kozaki K, Pimkhaokham A, Muramatsu T, Ono H, Ishihara T, et al. Stabilization of phenotypic plasticity through mesenchymal-specific DNA hypermethylation in cancer cells. Oncogene. 2012;31:1963-74 pubmed publisher
Chang C, Chao C, Xia W, Yang J, Xiong Y, Li C, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13:317-23 pubmed publisher
product information
SKU :
3396S
Product-Name :
TCF8/ZEB1 (D80D3) Rabbit mAb
Size :
100 ul
Price-(USD) :
235 USD
Species-x-Reactivity :
H, (M, R)
Applications :
Immunoprecipitation
Product-Category :
Developmental Biology
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
200
Host :
Rabbit
Target :
TCF8
Primary-Protein :
TCF8
Alt-Names :
AREB6,BZP,DELTAEF1,FECD6,MGC133261,NIL-2-A zinc finger protein,NIL2A,Negative regulator of IL2,TCF-8,TCF8,Transcription factor 8,ZEB1,ZFHEP,ZFHX1A,Zinc finger E-box-binding homeobox 1,delta-crystallin enhancer binding factor 1,transcription factor 8 (represses interleukin 2 expression),zinc finger E-box binding homeobox 1,zinc finger homeodomain enhancer-binding protein
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.