product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Smad2 (86F7) Rabbit mAb
catalog :
3122
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
86f7
reactivity :
human, dogs
application :
western blot, immunocytochemistry, immunoprecipitation
citations: 37
Published Application/Species/Sample/DilutionReference
  • immunocytochemistry; dogs; 1:2000; loading ...; fig 5a
  • western blot; dogs; 1:2000; loading ...; fig 5c
Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed publisher
  • western blot; human; loading ...; fig 2f
Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed publisher
  • western blot; human; loading ...; fig 1e
Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed publisher
  • western blot; human; fig 6d
Sarper M, Allen M, Gomm J, Haywood L, Decock J, Thirkettle S, et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 2017;19:33 pubmed publisher
  • immunocytochemistry; human; loading ...; fig 2c
Griggs L, Hassan N, Malik R, Griffin B, Martinez B, Elmore L, et al. Fibronectin fibrils regulate TGF-?1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 2017;60-61:157-175 pubmed publisher
  • western blot; human; loading ...; fig s2d
Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed publisher
  • western blot; human; 1:1000; fig 1
Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed publisher
  • western blot; human; fig 3
Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 2016;17:107 pubmed publisher
  • western blot; human; loading ...; fig 2k
Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed publisher
  • western blot; human; fig 4
Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget. 2016;7:25478-92 pubmed publisher
  • western blot; human; fig 1
Micha D, Voermans E, Eekhoff M, van Essen H, Zandieh Doulabi B, Netelenbos C, et al. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone. 2016;84:169-180 pubmed publisher
  • western blot; human; 1:1000; fig s1a
Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed publisher
  • western blot; human; 1:1000; fig 5
Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed publisher
  • immunocytochemistry; human; 1:300; fig 7
Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet. 2015;24:6769-87 pubmed publisher
  • western blot; human; fig 4c
Marchiq I, Albrengues J, Granja S, Gaggioli C, Pouysségur J, Simon M. Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction. Oncotarget. 2015;6:24636-48 pubmed publisher
  • western blot; human; fig 7
Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed publisher
  • western blot; human; 1:1000
Lee J, Fricke F, Warnken U, Schnölzer M, Kopitz J, Gebert J. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells. PLoS ONE. 2015;10:e0131506 pubmed publisher
  • western blot; human; 1:1000; fig s1
Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6:22480-95 pubmed
  • immunoprecipitation; human; 1:1000; fig 2.d,e
  • western blot; human; 1:1000; fig 2b
Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed publisher
  • western blot; human; 1:1000
Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling. Br J Cancer. 2014;110:724-32 pubmed publisher
Cheng J, Qin B, Liu B, Huang T, Li Y, Ma L. Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-? signaling. Oncol Lett. 2017;13:4794-4798 pubmed publisher
Alves M, Figuerêdo R, Azevedo F, Cavallaro D, Neto N, Lima J, et al. Adipose tissue fibrosis in human cancer cachexia: the role of TGF? pathway. BMC Cancer. 2017;17:190 pubmed publisher
Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed publisher
Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed publisher
Wu Y, Chang T, Huang Y, Huang H, Chou C. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 2014;33:3432-40 pubmed publisher
Han G, Bian L, Li F, Cotrim A, Wang D, Lu J, et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med. 2013;19:421-8 pubmed publisher
Roth P, Silginer M, Goodman S, Hasenbach K, Thies S, Maurer G, et al. Integrin control of the transforming growth factor-? pathway in glioblastoma. Brain. 2013;136:564-76 pubmed publisher
McKean D, Niswander L. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol Open. 2012;1:874-83 pubmed publisher
Cherukuri P, DeCastro A, Balboni A, Downey S, Liu J, Hutchinson J, et al. Phosphorylation of ?Np63? via a novel TGF?/ALK5 signaling mechanism mediates the anti-clonogenic effects of TGF?. PLoS ONE. 2012;7:e50066 pubmed publisher
Xie W, Aisner S, Baredes S, Sreepada G, Shah R, Reiss M. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck. 2013;35:76-85 pubmed publisher
Manser C, Guillot F, Vagnoni A, Davies J, Lau K, McLoughlin D, et al. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene. 2012;31:2773-82 pubmed publisher
Zode G, Sethi A, Brun Zinkernagel A, Chang I, Clark A, Wordinger R. Transforming growth factor-?2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Mol Vis. 2011;17:1745-58 pubmed
Zi Z, Feng Z, Chapnick D, Dahl M, Deng D, Klipp E, et al. Quantitative analysis of transient and sustained transforming growth factor-? signaling dynamics. Mol Syst Biol. 2011;7:492 pubmed publisher
Ng K, Lee Y, Lai W, Chan Y, Fung M, Tse H, et al. Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells. PLoS ONE. 2011;6:e19787 pubmed publisher
Dogar A, Towbin H, Hall J. Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem. 2011;286:16447-58 pubmed publisher
Louafi F, Martinez Nunez R, Sanchez Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem. 2010;285:41328-36 pubmed publisher
Polyakova V, Miyagawa S, Szalay Z, Risteli J, Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med. 2008;12:189-208 pubmed publisher
product information
SKU :
3122S
Product-Name :
Smad2 (86F7) Rabbit mAb
Size :
100 ul
Price-(USD) :
235 USD
Species-x-Reactivity :
H, Mk
Applications :
Immunofluorescence (Immunocytochemistry)
Product-Category :
Developmental Biology
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
60
Host :
Rabbit
Target :
Smad2
Primary-Protein :
Smad2
Alt-Names :
JV18,JV18-1,MAD homolog 2,MAD, mothers against decapentaplegic homolog 2,MADH2,MADR2,MGC22139,MGC34440,Mad protein homolog,Mad-related protein 2,Mothers against DPP homolog 2,Mothers against decapentaplegic homolog 2,SMAD 2,SMAD family member 2,SMAD, mothers against DPP homolog 2,SMAD2,Sma- and Mad-related protein 2,hMAD-2,hSMAD2,mother against DPP homolog 2
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.