product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Phospho-Smad2 (Ser465/467) (138D4) Rabbit mAb
catalog :
3108P
quantity :
40 ul
price :
123 USD
clonality :
monoclonal
host :
rabbit
antigen modification :
phosphorylated
reactivity :
human, mouse, rat, chicken, pig
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section
citations: 47
Published Application/Species/DilutionReference
  • western blot; human; 1:1000; fig 1
  • western blot; mouse; 1:1000; fig s1
Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:50-1:200; fig 4
Bassey-Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed publisher
  • western blot; human; 1:2000; fig s1
Fessler E, Drost J, van Hooff S, Linnekamp J, Wang X, Jansen M, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8:745-60 pubmed publisher
  • western blot; human; 1:1000; fig 1
Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed publisher
  • western blot; mouse; 1:1000; fig s2
Bianchi E, Boekelheide K, Sigman M, Lamb D, Hall S, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE. 2016;11:e0153968 pubmed publisher
  • western blot; human; fig 1
Languino L, Singh A, Prisco M, Inman G, Luginbuhl A, Curry J, et al. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res. 2016;8:2432-7 pubmed
  • western blot; human; fig 5
Min K, Liggett J, Silva G, Wu W, Wang R, Shen R, et al. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene. 2016;35:377-88 pubmed publisher
  • western blot; human; 1:2000; fig 4
Ding Z, Jin G, Wang W, Sun Y, Chen W, Chen L, et al. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells. Int J Mol Sci. 2016;17:408 pubmed publisher
  • western blot; human; fig 2
Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed publisher
  • western blot; human; fig 3e
Becker M, Ibrahim Y, Oh A, Fagan D, Byron S, Sarver A, et al. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer. PLoS ONE. 2016;11:e0150564 pubmed publisher
  • western blot; human; 1:200; fig st1
Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed publisher
  • western blot; mouse; 1:1000; fig 1
Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O'Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed publisher
  • western blot; human; fig 4c
Marchiq I, Albrengues J, Granja S, Gaggioli C, Pouyssegur J, Simon M. Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction. Oncotarget. 2015;6:24636-48 pubmed publisher
  • western blot; human; fig 7
Huygens C, Liénart S, Dedobbeleer O, Stockis J, Gauthy E, Coulie P, et al. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells. J Biol Chem. 2015;290:20105-16 pubmed publisher
  • western blot; mouse; 1:1000; fig 7
Tontonoz P, Cortez-Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
  • western blot; mouse; 1:500
Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed publisher
  • western blot; human; fig 1
Cui W, Zhou J, Dehne N, Brüne B. Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell Biosci. 2015;5:36 pubmed publisher
  • immunohistochemistry - paraffin section; mouse; 1:100; fig 2
  • western blot; mouse; fig 2
Kuroki H, Hayashi H, Nakagawa S, Sakamoto K, Higashi T, Nitta H, et al. Effect of LSKL peptide on thrombospondin 1-mediated transforming growth factor β signal activation and liver regeneration after hepatectomy in an experimental model. Br J Surg. 2015;102:813-25 pubmed publisher
  • western blot; human; fig s2d
Pelish H, Liau B, Nitulescu I, Tangpeerachaikul A, Poss Z, Da Silva D, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273-6 pubmed publisher
  • western blot; mouse; fig 1
Sahu S, Garding A, Tiwari N, Thakurela S, Toedling J, Gebhard S, et al. JNK-dependent gene regulatory circuitry governs mesenchymal fate. EMBO J. 2015;34:2162-81 pubmed publisher
  • western blot; rat; 1:1000
Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed publisher
  • western blot; human
Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGFβ-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed publisher
  • western blot; mouse; 1:100; fig 5a
Ramnath N, van de Luijtgaarden K, van der Pluijm I, van Nimwegen M, van Heijningen P, Swagemakers S, et al. Extracellular matrix defects in aneurysmal Fibulin-4 mice predispose to lung emphysema. PLoS ONE. 2014;9:e106054 pubmed publisher
  • western blot; pig
Wang H, Leinwand L, Anseth K. Roles of transforming growth factor-β1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation. FASEB J. 2014;28:4551-62 pubmed publisher
  • immunohistochemistry - paraffin section; human
  • western blot; human; 1:1000
Joseph J, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed publisher
  • western blot; mouse; 1:1000; fig 7
Das R, Xu S, Quan X, Nguyen T, Kong I, Chung C, et al. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol. 2014;306:F155-67 pubmed publisher
  • western blot; human
  • immunoprecipitation; human
Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, et al. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-β signaling. J Biol Chem. 2014;289:2072-83 pubmed publisher
  • western blot; chicken; 1:1000
Kosla J, Dvorak M, Cermák V. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. Gene. 2013;513:90-100 pubmed publisher
  • western blot; human
Kondo M, Yamaoka K, Sonomoto K, Fukuyo S, Oshita K, Okada Y, et al. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8:e79463 pubmed publisher
  • western blot; mouse; 1:500
Hardee M, Marciscano A, Medina-Ramirez C, Zagzag D, Narayana A, Lonning S, et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 2012;72:4119-29 pubmed publisher
  • western blot; mouse; fig 4a
Yang Y, Ahn Y, Gibbons D, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 2011;121:1373-85 pubmed publisher
Liu Y, Xu Y, Li X, Chen Z. Smad4 suppresses the progression of renal cell carcinoma via the activation of forkhead box protein H1. Mol Med Rep. 2015;11:2717-22 pubmed publisher
Silginer M, Weller M, Ziegler U, Roth P. Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death Dis. 2014;5:e1012 pubmed publisher
Liu Y, Liu X, Hao W, Decker Y, Schomburg R, Fülöp L, et al. IKKβ deficiency in myeloid cells ameliorates Alzheimer's disease-related symptoms and pathology. J Neurosci. 2014;34:12982-99 pubmed publisher
Wu Y, Chang T, Huang Y, Huang H, Chou C. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 2014;33:3432-40 pubmed publisher
Tulley S, Chen W. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-β signaling. J Biol Chem. 2014;289:15280-96 pubmed publisher
Wu Y, Ai Z, Yao K, Cao L, Du J, Shi X, et al. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp Cell Res. 2013;319:2684-99 pubmed publisher
Xie W, Aisner S, Baredes S, Sreepada G, Shah R, Reiss M. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck. 2013;35:76-85 pubmed publisher
Chen D, Wang W, Qin J, Wang M, Murugesan S, Nadkarni D, et al. Identification of the ZAK-MKK4-JNK-TGFβ signaling pathway as a molecular target for novel synthetic iminoquinone anticancer compound BA-TPQ. Curr Cancer Drug Targets. 2013;13:651-60 pubmed
Kosla J, Dvorakova M, Dvorak M, Cermák V. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-β signaling and perturbation of MAPK signaling. Eur J Cell Biol. 2013;92:363-73 pubmed publisher
Motizuki M, Isogaya K, Miyake K, Ikushima H, Kubota T, Miyazono K, et al. Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β. J Biol Chem. 2013;288:18911-22 pubmed publisher
Roth P, Silginer M, Goodman S, Hasenbach K, Thies S, Maurer G, et al. Integrin control of the transforming growth factor-β pathway in glioblastoma. Brain. 2013;136:564-76 pubmed publisher
Eyckmans J, Roberts S, Bolander J, Schrooten J, Chen C, Luyten F. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials. 2013;34:4612-21 pubmed publisher
Chen H, Ko J, Wong V, Hyytiäinen M, Keski-Oja J, Chua D, et al. LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth factor permissive microenvironment in nasopharyngeal carcinoma. Cancer Lett. 2012;325:89-98 pubmed publisher
Manser C, Guillot F, Vagnoni A, Davies J, Lau K, McLoughlin D, et al. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene. 2012;31:2773-82 pubmed publisher
Nelson E, Huang C, Ewel J, Chang A, Yuan C. Halofuginone down-regulates Smad3 expression and inhibits the TGFbeta-induced expression of fibrotic markers in human corneal fibroblasts. Mol Vis. 2012;18:479-87 pubmed
Kong B, Michalski C, Hong X, Valkovskaya N, Rieder S, Abiatari I, et al. AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene. 2010;29:5146-58 pubmed publisher
product information
SKU :
3108P
Product-Name :
Phospho-Smad2 (Ser465/467) (138D4) Rabbit mAb
Size :
40 ul
Price-(USD) :
123 USD
Species-x-Reactivity :
H, M, R, Mi
Applications :
Western blot
Product-Category :
Developmental Biology
Shipping-Temp :
COLD
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
60
Host :
Rabbit
Target :
Smad2 (Ser465/Ser467) phosphate
Primary-Protein :
Smad2
Alt-Names :
JV18,JV18-1,MAD homolog 2,MAD, mothers against decapentaplegic homolog 2,MADH2,MADR2,MGC22139,MGC34440,Mad protein homolog,Mad-related protein 2,Mothers against DPP homolog 2,Mothers against decapentaplegic homolog 2,SMAD 2,SMAD family member 2,SMAD, mothers against DPP homolog 2,SMAD2,Sma- and Mad-related protein 2,hMAD-2,hSMAD2,mother against DPP homolog 2
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.