product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Phospho-Met (Tyr1234/1235) (D26) XP® Rabbit mAb
catalog :
3077
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
antigen modification :
phosphorylated
clone name :
D26
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, flow cytometry, immunohistochemistry - paraffin section
citations: 51
Published Application/Species/Sample/DilutionReference
  • western blot; human; loading ...
Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4c
Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:100; loading ...; fig s2c
  • immunocytochemistry; human; 1:200; loading ...; fig 2e
  • western blot; human; 1:1000; loading ...; fig 3a
Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594 pubmed publisher
  • western blot; mouse; loading ...; fig 7b
Zhang X, Olsavszky V, Yin Y, Wang B, Engleitner T, Ollinger R, et al. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. Am J Pathol. 2020;190:358-371 pubmed publisher
  • western blot; human; loading ...; fig s4s
Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 6d
Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 3c
Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed publisher
  • western blot; human; loading ...; fig 4a
Chen M, Du Y, Sun L, Hsu J, Wang Y, Gao Y, et al. H2O2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem. 2019;294:8516-8528 pubmed publisher
  • immunohistochemistry; human; loading ...; fig 8a
  • western blot; human; loading ...; fig 4a
Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed publisher
  • immunocytochemistry; human; 1:700; loading ...; fig 5a
  • western blot; human; 1:1000; loading ...; fig 4a
Martin V, Chiriaco C, Modica C, Acquadro A, Cortese M, Galimi F, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120:527-536 pubmed publisher
  • immunocytochemistry; human; 1:100; loading ...; fig 6d
  • western blot; human; loading ...; fig 6e
Xie Y, Fan H, Lu W, Yang Q, Nurkesh A, Yeleussizov T, et al. Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38:2967-2983 pubmed publisher
  • western blot; human; loading ...; fig 2
Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol. 2017;11:1430-1447 pubmed publisher
  • western blot; human; fig s5d
Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell. 2017;31:685-696.e6 pubmed publisher
  • western blot; mouse; loading ...; fig 3b
Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed publisher
  • western blot; human; loading ...; fig 6c
Duclos C, Champagne A, Carrier J, Saucier C, Lavoie C, Denault J. Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov. 2017;3:16100 pubmed publisher
  • western blot; human; loading ...; fig 6c
Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed publisher
  • western blot; human; fig 5d
Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 1c
Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed publisher
  • western blot; human; fig 5b
Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed publisher
  • western blot; human; 1:1000; loading ...; fig 4b
Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed publisher
  • western blot; mouse; loading ...; fig s7l
Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed publisher
  • immunohistochemistry - paraffin section; human; loading ...; fig s1j
Krampitz G, George B, Willingham S, Volkmer J, Weiskopf K, Jahchan N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl Acad Sci U S A. 2016;113:4464-9 pubmed publisher
  • immunohistochemistry - paraffin section; human; fig 3
  • western blot; human; fig 1
Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed publisher
  • western blot; human; fig 3
Chu C, Bottaro D, Betenbaugh M, Shiloach J. Stable Ectopic Expression of ST6GALNAC5 Induces Autocrine MET Activation and Anchorage-Independence in MDCK Cells. PLoS ONE. 2016;11:e0148075 pubmed publisher
  • western blot; human; 1:1000; fig 3
Du Y, Yamaguchi H, Wei Y, Hsu J, Wang H, Hsu Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22:194-201 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:200-1:500; fig 4i
Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed publisher
  • western blot; human; loading ...; fig 3a
Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed publisher
  • western blot; human; loading ...; fig 1C
Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed publisher
  • immunohistochemistry - paraffin section; human
  • western blot; human
Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed publisher
  • western blot; human; fig 5
Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  • western blot; human; fig 1
Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed publisher
  • western blot; mouse; fig s3
Etnyre D, Stone A, Fong J, Jacobs R, Uppada S, Botting G, et al. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther. 2014;15:1129-41 pubmed publisher
  • immunohistochemistry - paraffin section; mouse
Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed publisher
  • western blot; human
Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed publisher
Liu J, Wu P, Wang Y, Du Y, A N, Liu S, et al. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res. 2016;8:4605-4627 pubmed
Manchado E, Weissmueller S, Morris J, Chen C, Wullenkord R, Lujambio A, et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature. 2016;534:647-51 pubmed
Blackwell C, Sherk C, Fricko M, Ganji G, Barnette M, Hoang B, et al. Inhibition of FGF/FGFR autocrine signaling in mesothelioma with the FGF ligand trap, FP-1039/GSK3052230. Oncotarget. 2016;7:39861-39871 pubmed publisher
Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed publisher
Lesnik J, ANTES T, Kim J, Griner E, Pedro L. Registered report: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. elife. 2016;5:e07383 pubmed publisher
Pothula S, Xu Z, Goldstein D, Biankin A, Pirola R, Wilson J, et al. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. Br J Cancer. 2016;114:269-80 pubmed publisher
Prince T, Kijima T, Tatokoro M, Lee S, Tsutsumi S, Yim K, et al. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. PLoS ONE. 2015;10:e0141786 pubmed publisher
Fang W, Mafuvadze B, Yao M, Zou A, Portsche M, Cheng N. TGF-β Negatively Regulates CXCL1 Chemokine Expression in Mammary Fibroblasts through Enhancement of Smad2/3 and Suppression of HGF/c-Met Signaling Mechanisms. PLoS ONE. 2015;10:e0135063 pubmed publisher
Yeh I, Botton T, Talevich E, Shain A, Sparatta A, de la Fouchardiere A, et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun. 2015;6:7174 pubmed publisher
Akin D, Wang S, Habibzadegah Tari P, Law B, Ostrov D, Li M, et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy. 2014;10:2021-35 pubmed publisher
Zhou Y, Rideout W, Bressel A, Yalavarthi S, Zi T, Potz D, et al. Spontaneous genomic alterations in a chimeric model of colorectal cancer enable metastasis and guide effective combinatorial therapy. PLoS ONE. 2014;9:e105886 pubmed publisher
Outani H, Tanaka T, Wakamatsu T, Imura Y, Hamada K, Araki N, et al. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS. BMC Cancer. 2014;14:455 pubmed publisher
Lacroix L, Post S, Valent A, Melkane A, Vielh P, Egile C, et al. MET genetic abnormalities unreliable for patient selection for therapeutic intervention in oropharyngeal squamous cell carcinoma. PLoS ONE. 2014;9:e84319 pubmed publisher
Webster M, Fan C. c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS ONE. 2013;8:e81757 pubmed publisher
Panke C, Weininger D, Haas A, Schelter F, Schlothauer T, Bader S, et al. Quantification of cell surface proteins with bispecific antibodies. Protein Eng Des Sel. 2013;26:645-54 pubmed publisher
Straussman R, Morikawa T, Shee K, Barzily Rokni M, Qian Z, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500-4 pubmed publisher
Benedettini E, Sholl L, Peyton M, Reilly J, Ware C, Davis L, et al. Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am J Pathol. 2010;177:415-23 pubmed publisher
product information
SKU :
3077S
Product-Name :
Phospho-Met (Tyr1234/1235) (D26) XP® Rabbit mAb
Size :
100 ul
Price-(USD) :
301 USD
Species-x-Reactivity :
H, M, R
Applications :
Flow cytometry
Product-Category :
RTK
Shipping-Temp :
COLD
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
145
Host :
Rabbit
Target :
Met (Tyr1234/Tyr1235) phosphate
Primary-Protein :
Met
Alt-Names :
AUTS9,HGF receptor,HGF/SF receptor,HGFR,Hepatocyte growth factor receptor,MET,Proto-oncogene c-Met,RCCP2,SF receptor,Scatter factor receptor,Tyrosine-protein kinase Met,c-Met,met proto-oncogene (hepatocyte growth factor receptor),met proto-oncogene tyrosine kinase,oncogene MET
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.