product summary
company name :
Cell Signaling Technology
product type :
antibody
product name :
Phospho-PRAS40 (Thr246) (C77D7) Rabbit mAb
catalog :
2997
clonality :
monoclonal
host :
domestic rabbit
conjugate :
nonconjugated
antigen modification :
phosphorylated
clone name :
C77D7
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section
citations: 46
Published Application/Species/Sample/DilutionReference
  • western blot; human; 1:1000; loading ...; fig 2b
Feng W, Cao Z, Lim P, Zhao H, Luo H, Mao N, et al. Rapid interrogation of cancer cell of origin through CRISPR editing. Proc Natl Acad Sci U S A. 2021;118: pubmed publisher
  • western blot; mouse; 1:1000; loading ...
Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed publisher
  • western blot; human; loading ...; fig 2a
Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed publisher
  • western blot; human; loading ...; fig 5b
Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1684-1692 pubmed publisher
  • western blot; human; loading ...; fig 5
Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed publisher
  • western blot; human; loading ...; fig s5f
Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed publisher
  • western blot; mouse; loading ...; fig s10
Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed publisher
  • western blot; human; loading ...; fig s3a
Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed publisher
  • western blot; human; loading ...; fig 5c
Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed publisher
  • western blot; mouse; loading ...; fig 4a
Kissing S, Rudnik S, Damme M, Lüllmann Rauch R, Ichihara A, Kornak U, et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy. 2017;13:670-685 pubmed publisher
  • western blot; mouse; 1:1000; loading ...; fig 4a
Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed publisher
  • western blot; mouse; loading ...; fig 1c
Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed publisher
  • immunohistochemistry - paraffin section; human; 1:200; loading ...; fig 4.a, b, c
Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed publisher
  • western blot; mouse; loading ...; fig 3b
Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed publisher
  • immunocytochemistry; mouse; 1:500; fig 5
Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  • western blot; human; fig 1b
Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed publisher
  • western blot; mouse; 1:1000; fig 1
Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed publisher
  • western blot; human; fig 5
Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  • western blot; mouse; 1:1000; fig s3b
Gross S, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci. 2015;128:2509-19 pubmed publisher
  • western blot; mouse; fig 1a
Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed publisher
  • western blot; human; fig 1
Hausmann S, Brandt E, Köchel C, Einsele H, Bargou R, Seggewiss Bernhardt R, et al. Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines. PLoS ONE. 2015;10:e0122689 pubmed publisher
  • western blot; human; 1:1000
Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed publisher
  • western blot; human; loading ...; fig 1a
Alayev A, Berger S, Kramer M, Schwartz N, Holz M. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem. 2015;116:450-7 pubmed publisher
  • immunohistochemistry - paraffin section; mouse
Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed publisher
  • western blot; human
Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed publisher
  • western blot; human
BENTLEY C, Jurinka S, Kljavin N, Vartanian S, Ramani S, Gonzalez L, et al. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J. 2013;452:313-20 pubmed publisher
Ronellenfitsch M, Zeiner P, Mittelbronn M, Urban H, Pietsch T, Reuter D, et al. Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma. Acta Neuropathol Commun. 2018;6:81 pubmed publisher
Chen M, Nowak D, Narula N, Robinson B, Watrud K, Ambrico A, et al. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol. 2017;216:641-656 pubmed publisher
Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed publisher
Henry W, Laszewski T, Tsang T, Beca F, Beck A, McAllister S, et al. Aspirin Suppresses Growth in PI3K-Mutant Breast Cancer by Activating AMPK and Inhibiting mTORC1 Signaling. Cancer Res. 2017;77:790-801 pubmed publisher
Kang J, Kusnadi E, Ogden A, Hicks R, Bammert L, Kutay U, et al. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription. Oncotarget. 2016;7:48887-48904 pubmed publisher
Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann H, et al. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS ONE. 2016;11:e0154745 pubmed publisher
Theiss A, Chafin D, Bauer D, Grogan T, Baird G. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation. PLoS ONE. 2014;9:e113608 pubmed publisher
Carlino M, Fung C, Shahheydari H, Todd J, Boyd S, Irvine M, et al. Preexisting MEK1P124 mutations diminish response to BRAF inhibitors in metastatic melanoma patients. Clin Cancer Res. 2015;21:98-105 pubmed publisher
Liu P, Begley M, Michowski W, Inuzuka H, Ginzberg M, Gao D, et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature. 2014;508:541-5 pubmed publisher
Wattenberg M, Kwilas A, Gameiro S, Dicker A, Hodge J. Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. Br J Cancer. 2014;110:1472-80 pubmed publisher
Jordan N, Dutkowski C, Barrow D, Mottram H, Hutcheson I, Nicholson R, et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res. 2014;16:R12 pubmed publisher
Li J, Davies B, Han S, Zhou M, Bai Y, Zhang J, et al. The AKT inhibitor AZD5363 is selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived gastric cancer xenograft model with PTEN loss to Taxotere. J Transl Med. 2013;11:241 pubmed publisher
Radhakrishnan P, Baraneedharan U, Veluchamy S, Dhandapani M, Pinto D, Thiyagarajan S, et al. Inhibition of rapamycin-induced AKT activation elicits differential antitumor response in head and neck cancers. Cancer Res. 2013;73:1118-27 pubmed publisher
Chafin D, Theiss A, Roberts E, Borlee G, Otter M, Baird G. Rapid two-temperature formalin fixation. PLoS ONE. 2013;8:e54138 pubmed publisher
Yi K, Axtmayer J, Gustin J, Rajpurohit A, Lauring J. Functional analysis of non-hotspot AKT1 mutants found in human breast cancers identifies novel driver mutations: implications for personalized medicine. Oncotarget. 2013;4:29-34 pubmed
Jozefczuk J, Kashofer K, Ummanni R, Henjes F, Rehman S, Geenen S, et al. A Systems Biology Approach to Deciphering the Etiology of Steatosis Employing Patient-Derived Dermal Fibroblasts and iPS Cells. Front Physiol. 2012;3:339 pubmed publisher
Chow B, Chew E, Zhao C, Bathgate R, Hewitson T, Samuel C. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS ONE. 2012;7:e42714 pubmed publisher
Faber A, Corcoran R, Ebi H, Sequist L, Waltman B, Chung E, et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 2011;1:352-65 pubmed publisher
Andersen J, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen A, et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med. 2010;2:43ra55 pubmed publisher
Thomson D, Hancock C, Evanson B, Kenney S, Malan B, Mongillo A, et al. Skeletal muscle dysfunction in muscle-specific LKB1 knockout mice. J Appl Physiol (1985). 2010;108:1775-85 pubmed publisher
product information
SKU :
2997S
Product-Name :
Phospho-PRAS40 (Thr246) (C77D7) Rabbit mAb
Size :
100 ul
Price-(USD) :
274 USD
Species-x-Reactivity :
H, M, R, Mk
Applications :
Immunohistochemistry (Paraffin)
Product-Category :
PI3K / Akt Signaling
Shipping-Temp :
AMBIENT
Storage-Temp :
-20°C
Product-Type :
Monoclonal Antibody
MW :
40
Host :
Rabbit
Target :
PRAS40 (Thr246) phosphate
Primary-Protein :
PRAS40
Alt-Names :
AKT1S1,proline-rich AKT1 substrate 1
company information
Cell Signaling Technology
3 Trask Lane
Danvers, MA 01923
info@cellsignal.com
https://www.cellsignal.com
8776162355
headquarters: USA
Established in Beverly, MA in 1999, Cell Signaling Technology (CST) is a privately-owned company with over 400 employees worldwide. We are dedicated to providing innovative research tools that are used to help define mechanisms underlying cell function and disease. Since its inception, CST has become the world leader in the production of the highest quality activation-state and total protein antibodies utilized to expand knowledge of cell signaling pathways. Our mission is to deliver the world's highest quality research tools that accelerate progress in biological research and personalized medicine.