| Published Application/Species/Sample/Dilution | Reference |
|---|
- immunohistochemistry; mouse; loading ...; fig 5e
| Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed publisher
|
- immunocytochemistry; mouse; loading ...; fig 2f
| Chiche A, Di Cicco A, Sesma Sanz L, Bresson L, de la Grange P, Glukhova M, et al. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res. 2019;21:13 pubmed publisher
|
- immunohistochemistry; mouse; loading ...; fig s6a
| Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed publisher
|
- immunohistochemistry; human; 1:1000; fig 2g
| Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed publisher
|
- immunocytochemistry; human; 1:1000; fig 3b
| Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; loading ...; fig s1h
| Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed publisher
|
- immunohistochemistry; mouse; loading ...; fig 4c
| Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:200; loading ...; fig 4b
| Tao L, Xiang D, Xie Y, Bronson R, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun. 2017;8:14431 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; loading ...
| Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:1000; loading ...; fig 3c
| Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed publisher
|
- immunocytochemistry; human; 1:500; loading ...; fig s1
- western blot; human; 1:1000; loading ...; fig 2b
| Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 2
| Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed publisher
|
- immunocytochemistry; human; 1:300; loading ...; fig 2b
| Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:1000; fig 1
| Johnson D, Hooker E, Luong R, Yu E, He Y, Gonzalgo M, et al. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice. PLoS ONE. 2016;11:e0148851 pubmed publisher
|
- immunohistochemistry; mouse; 1:500; fig 7
| Wang Z, Kim J, Teng Y, Ding H, Zhang J, Hai T, et al. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene. 2016;35:3555-64 pubmed publisher
|
- immunohistochemistry - paraffin section; human; 1:100; loading ...; fig 2
- immunocytochemistry; human; 1:100; loading ...; fig 4
| Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; 1:2500; fig 1
| Lee S, Johnson D, Luong R, Yu E, Cunha G, Nusse R, et al. Wnt/β-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells. 2015;33:3356-67 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:50; fig 2
| Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; fig s2
| Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed publisher
|
- immunocytochemistry; mouse; 1:1000
| Wang B, Wang X, Long J, Eastham Anderson J, Firestein R, Junttila M. Castration-resistant Lgr5(+) cells are long-lived stem cells required for prostatic regeneration. Stem Cell Reports. 2015;4:768-79 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:800; fig 4
| Lee S, Luong R, Johnson D, Cunha G, Rivina L, Gonzalgo M, et al. Androgen signaling is a confounding factor for β-catenin-mediated prostate tumorigenesis. Oncogene. 2016;35:702-14 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse
| Sicoli D, Jiao X, Ju X, Velasco Velázquez M, Ertel A, Addya S, et al. CCR5 receptor antagonists block metastasis to bone of v-Src oncogene-transformed metastatic prostate cancer cell lines. Cancer Res. 2014;74:7103-14 pubmed publisher
|
- western blot; mouse; 1:1000; fig 3
| Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse
| Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed publisher
|
- immunohistochemistry - frozen section; mouse; fig 3
| Zhang C, Guo Y, Cui J, Zhu H, Gao W. Cytokeratin 18 is not required for morphogenesis of developing prostates but contributes to adult prostate regeneration. Biomed Res Int. 2013;2013:576472 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:200
| Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed publisher
|
| Sfakianos J, Daza J, Hu Y, Anastos H, Bryant G, Bareja R, et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat Commun. 2020;11:2540 pubmed publisher
|
| Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Front Cell Dev Biol. 2020;8:68 pubmed publisher
|
| Florian S, Iwamoto Y, Coughlin M, Weissleder R, Mitchison T. A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor. Proc Natl Acad Sci U S A. 2019;116:11444-11453 pubmed publisher
|
| Kwon O, Zhang Y, Li Y, Wei X, Zhang L, Chen R, et al. Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq. iScience. 2019;13:328-338 pubmed publisher
|
| Lee D, Yu E, Aldahl J, Yang J, He Y, Hooker E, et al. Deletion of the p16INK4a tumor suppressor and expression of the androgen receptor induce sarcomatoid carcinomas with signet ring cells in the mouse prostate. PLoS ONE. 2019;14:e0211153 pubmed publisher
|
| Jiao X, Li Z, Wang M, Katiyar S, Di Sante G, Farshchian M, et al. Dachshund Depletion Disrupts Mammary Gland Development and Diverts the Composition of the Mammary Gland Progenitor Pool. Stem Cell Reports. 2019;12:135-151 pubmed publisher
|
| Xiong X, Schober M, Tassone E, Khodadadi Jamayran A, Sastre Perona A, Zhou H, et al. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep. 2018;25:3006-3020.e7 pubmed publisher
|
| Mi J, Hooker E, Balog S, Zeng H, Johnson D, He Y, et al. Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate. J Biol Chem. 2018;293:20123-20136 pubmed publisher
|
| Livshits G, Alonso Curbelo D, Morris J, Koche R, Saborowski M, Wilkinson J, et al. Arid1a restrains Kras-dependent changes in acinar cell identity. elife. 2018;7: pubmed publisher
|
| Li Q, Alsaidan O, Ma Y, Kim S, Liu J, Albers T, et al. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem. 2018;293:6434-6448 pubmed publisher
|
| He Y, Hooker E, Yu E, Wu H, Cunha G, Sun Z. An Indispensable Role of Androgen Receptor in Wnt Responsive Cells During Prostate Development, Maturation, and Regeneration. Stem Cells. 2018;36:891-902 pubmed publisher
|
| Li Q, Ingram L, Kim S, Beharry Z, Cooper J, Cai H. Paracrine Fibroblast Growth Factor Initiates Oncogenic Synergy with Epithelial FGFR/Src Transformation in Prostate Tumor Progression. Neoplasia. 2018;20:233-243 pubmed publisher
|
| Bresson L, Faraldo M, Di Cicco A, Quintanilla M, Glukhova M, Deugnier M. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development. 2018;145: pubmed publisher
|
| Yang C, Melhuish T, Spencer A, Ni L, Hao Y, Jividen K, et al. The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression. Prostate. 2017;77:1452-1467 pubmed publisher
|
| Ai J, Tai P, Lu Y, Li J, Ma H, Su Q, et al. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue. Prostate. 2017;77:1265-1270 pubmed publisher
|
| Wu M, Ingram L, Tolosa E, Vera R, Li Q, Kim S, et al. Gli Transcription Factors Mediate the Oncogenic Transformation of Prostate Basal Cells Induced by a Kras-Androgen Receptor Axis. J Biol Chem. 2016;291:25749-25760 pubmed
|
| Gao D, Zhan Y, Di W, Moore A, Sher J, Guan Y, et al. A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon. PLoS ONE. 2016;11:e0161084 pubmed publisher
|
| Kwon O, Zhang B, Zhang L, Xin L. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells. Stem Cell Res. 2016;16:682-91 pubmed publisher
|
| Park J, Lee J, Phillips J, Huang P, Cheng D, Huang J, et al. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc Natl Acad Sci U S A. 2016;113:4482-7 pubmed publisher
|
| Linn D, Penney K, Bronson R, Mucci L, Li Z. Deletion of Interstitial Genes between TMPRSS2 and ERG Promotes Prostate Cancer Progression. Cancer Res. 2016;76:1869-81 pubmed publisher
|
| Hübner A, Mulholland D, Standen C, Karasarides M, Cavanagh Kyros J, Barrett T, et al. JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci U S A. 2012;109:12046-51 pubmed publisher
|