| Published Application/Species/Sample/Dilution | Reference | 
|---|
| western blot knockout validation; human; loading ...; fig 1a, 1b
 | Earnest J, Hantak M, Li K, McCray P, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017;13:e1006546 pubmed  publisher | 
| flow cytometry; human; loading ...; tbl 2
 | Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al . Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed  publisher | 
| blocking or activating experiments; human; loading ...; fig 3a
 | Lee M, Yang J, Jo E, Lee J, Kim H, Bartenschlager R, et al . A Novel Inhibitor IDPP Interferes with Entry and Egress of HCV by Targeting Glycoprotein E1 in a Genotype-Specific Manner. Sci Rep. 2017;7:44676 pubmed  publisher | 
| flow cytometry; human; fig 3c
 | Lisenko K, Schönland S, Hegenbart U, Wallenwein K, Braun U, Mai E, et al . Potential therapeutic targets in plasma cell disorders: A flow cytometry study. Cytometry B Clin Cytom. 2017;92:145-152 pubmed  publisher | 
| flow cytometry; human; fig 1d
 | Trautz B, Pierini V, Wombacher R, Stolp B, Chase A, Pizzato M, et al . The Antagonism of HIV-1 Nef to SERINC5 Particle Infectivity Restriction Involves the Counteraction of Virion-Associated Pools of the Restriction Factor. J Virol. 2016;90:10915-10927 pubmed  publisher | 
| western blot; human; fig 2
 | Wong M, Chen S. Human Choline Kinase-? Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation. J Virol. 2016;90:9075-95 pubmed  publisher | 
| flow cytometry; human; 1 ug/ml; fig 1western blot; human; fig 1
 | Shirasago Y, Shimizu Y, Tanida I, Suzuki T, Suzuki R, Sugiyama K, et al . Occludin-Knockout Human Hepatic Huh7.5.1-8-Derived Cells Are Completely Resistant to Hepatitis C Virus Infection. Biol Pharm Bull. 2016;39:839-48 pubmed  publisher | 
| flow cytometry; human; 1:200; fig 1
 | Nadeem A, Thomas P, Ulf M, Elena N, Anggakusuma A, Mohamed B, et al . Cell culture-derived HCV cannot infect synovial fibroblasts. Sci Rep. 2015;5:18043 pubmed  publisher | 
| blocking or activating experiments; human; fig 5immunocytochemistry; human; fig 1
 | March S, Ramanan V, Trehan K, Ng S, Galstian A, Gural N, et al . Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10:2027-53 pubmed  publisher | 
| western blot; human; fig 6c
 | Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, et al . Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853:3211-23 pubmed  publisher | 
| other; human; loading ...; fig e4c
 | Saeed M, Andreo U, Chung H, Espiritu C, Branch A, Silva J, et al . SEC14L2 enables pan-genotype HCV replication in cell culture. Nature. 2015;524:471-5 pubmed  publisher | 
| proximity ligation assay; human; loading ...; fig 13immunocytochemistry; human; 1:50; loading ...; fig 2a
 | Le Q, Blanchet M, Seidah N, Labonté P. Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9. J Biol Chem. 2015;290:23385-400 pubmed  publisher | 
| immunocytochemistry; human; fig 10
 | Luo X, Fan Y, Park I, He J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE. 2015;10:e0124436 pubmed  publisher | 
| flow cytometry; human; fig s3dwestern blot; human; 1:200; fig s1bwestern blot; African green monkey; fig s1bflow cytometry; Rhesus monkey; fig s3dwestern blot; Rhesus monkey; fig s1b
 | Scull M, Shi C, De Jong Y, Gerold G, Ries M, von Schaewen M, et al . Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology. 2015;62:57-67 pubmed  publisher | 
| flow cytometry; human; fig 2
 | Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, et al . Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol. 2015;93:727-34 pubmed  publisher | 
| flow cytometry; humanimmunocytochemistry; humanwestern blot; human; fig 1
 | Lambelé M, Koppensteiner H, Symeonides M, Roy N, Chan J, Schindler M, et al . Vpu is the main determinant for tetraspanin downregulation in HIV-1-infected cells. J Virol. 2015;89:3247-55 pubmed  publisher | 
| flow cytometry; human; 1:500; loading ...; fig 6c
 | Shirasago Y, Sekizuka T, Saito K, Suzuki T, Wakita T, Hanada K, et al . Isolation and characterization of an Huh.7.5.1-derived cell clone highly permissive to hepatitis C virus. Jpn J Infect Dis. 2015;68:81-8 pubmed  publisher | 
| blocking or activating experiments; human
 | Bankwitz D, Vieyres G, Hueging K, Bitzegeio J, Doepke M, Chhatwal P, et al . Role of hypervariable region 1 for the interplay of hepatitis C virus with entry factors and lipoproteins. J Virol. 2014;88:12644-55 pubmed  publisher | 
| flow cytometry; human; fig 1
 | Matsuda M, Suzuki R, Kataoka C, Watashi K, Aizaki H, Kato N, et al . Alternative endocytosis pathway for productive entry of hepatitis C virus. J Gen Virol. 2014;95:2658-67 pubmed  publisher | 
| blocking or activating experiments; human
 | Prentoe J, Serre S, Ramírez S, Nicosia A, Gottwein J, Bukh J. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus. J Virol. 2014;88:1725-39 pubmed  publisher | 
|  | Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al . Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed  publisher | 
|  | Velázquez Moctezuma R, Law M, Bukh J, Prentoe J. Applying antibody-sensitive hypervariable region 1-deleted hepatitis C virus to the study of escape pathways of neutralizing human monoclonal antibody AR5A. PLoS Pathog. 2017;13:e1006214 pubmed  publisher | 
|  | Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al . Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed  publisher | 
|  | Zuidscherwoude M, Göttfert F, Dunlock V, Figdor C, van den Bogaart G, van Spriel A. The tetraspanin web revisited by super-resolution microscopy. Sci Rep. 2015;5:12201 pubmed  publisher | 
|  | He J, Sun E, Bujny M, Kim D, Davidson M, Zhuang X. Dual function of CD81 in influenza virus uncoating and budding. PLoS Pathog. 2013;9:e1003701 pubmed  publisher | 
|  | Shaw M, Stone K, Colangelo C, Gulcicek E, Palese P. Cellular proteins in influenza virus particles. PLoS Pathog. 2008;4:e1000085 pubmed  publisher | 
|  | Bartosch B, Dubuisson J, Cosset F. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med. 2003;197:633-42 pubmed | 
|  | Crotta S, Stilla A, Wack A, D ANDREA A, Nuti S, D Oro U, et al . Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med. 2002;195:35-41 pubmed |