| Published Application/Species/Sample/Dilution | Reference | 
|---|
| flow cytometry; human; loading ...; fig 1c
 | Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al . Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed  publisher | 
| flow cytometry; human; fig s4c
 | Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al . CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed  publisher | 
| flow cytometry; human; loading ...; fig 2a
 | Litzenburger U, Buenrostro J, Wu B, Shen Y, Sheffield N, Kathiria A, et al . Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 2017;18:15 pubmed  publisher | 
| flow cytometry; mouse; loading ...; fig 7B
 | Duru N, Gernapudi R, Lo P, Yao Y, Wolfson B, Zhang Y, et al . Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget. 2016;7:47511-47525 pubmed  publisher | 
| flow cytometry; human; 1:40; loading ...; fig s5b
 | Kwak J, Lee N, Lee H, Hong I, Nam J. HIF2?/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy. Oncotarget. 2016;7:43518-43533 pubmed  publisher | 
| flow cytometry; human; fig 2
 | Lu K, Wang B, Chi W, Chang Chien J, Yang J, Lee H, et al . Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27. Toxins (Basel). 2016;8: pubmed  publisher | 
| flow cytometry; human; fig st1
 | Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed  publisher | 
| flow cytometry; human; fig 4
 | Hardy K, Wu F, Tu W, Zafar A, Boulding T, McCuaig R, et al . Identification of chromatin accessibility domains in human breast cancer stem cells. Nucleus. 2016;7:50-67 pubmed  publisher | 
| flow cytometry; human; fig 1b
 | Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al . Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed  publisher | 
| flow cytometry; human; fig s1
 | Boulding T, Wu F, McCuaig R, Dunn J, Sutton C, Hardy K, et al . Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer. PLoS ONE. 2016;11:e0148065 pubmed  publisher | 
| flow cytometry; human; 1:100; fig s6
 | Wang X, Jung Y, Jun S, Lee S, Wang W, Schneider A, et al . PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun. 2016;7:10633 pubmed  publisher | 
| flow cytometry; human; fig 1
 | Todoroki K, Ogasawara S, Akiba J, Nakayama M, Naito Y, Seki N, et al . CD44v3+/CD24- cells possess cancer stem cell-like properties in human oral squamous cell carcinoma. Int J Oncol. 2016;48:99-109 pubmed  publisher | 
| flow cytometry; human; fig 1
 | Iriondo O, Rábano M, Domenici G, Carlevaris O, López Ruiz J, Zabalza I, et al . Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721-39 pubmed  publisher | 
| flow cytometry; human; 1:200
 | Cho M, Park J, Choi H, Park M, Won H, Park Y, et al . DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed  publisher | 
| flow cytometry; human; fig 3G
 | Wei X, Dou X, Bai J, Luo X, Qiu S, Xi D, et al . ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget. 2015;6:21704-17 pubmed | 
| flow cytometry; human; fig s1
 | Cioffi M, D Alterio C, Camerlingo R, Tirino V, Consales C, Riccio A, et al . Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci Rep. 2015;5:10357 pubmed  publisher | 
| flow cytometry; human; fig s2
 | Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al . ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed  publisher | 
| flow cytometry; human; fig s1
 | Ross J, Huh D, Noble L, Tavazoie S. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat Cell Biol. 2015;17:651-64 pubmed  publisher | 
|  | Sutherland D, Illingworth A, Keeney M, Richards S. High-Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White Blood Cells. Curr Protoc Cytom. 2015;72:6.37.1-30 pubmed  publisher | 
|  | Chandrasekaran S, Marshall J, Messing J, Hsu J, King M. TRAIL-mediated apoptosis in breast cancer cells cultured as 3D spheroids. PLoS ONE. 2014;9:e111487 pubmed  publisher | 
| flow cytometry; human; fig 6
 | Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al . Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed  publisher | 
| flow cytometry; human; 1:50; fig 1
 | Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al . A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed  publisher | 
|  | Zhang Y, Xia J, Li Q, Yao Y, Eades G, Gernapudi R, et al . NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem. 2014;289:31310-8 pubmed  publisher | 
|  | Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al . Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed  publisher | 
| flow cytometry; human; tbl 1
 | Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al . Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed  publisher | 
|  | Lighaam L, Vermeulen E, Bleker T, Meijlink K, Aalberse R, Barnes E, et al . Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J Allergy Clin Immunol. 2014;133:267-70.e1-6 pubmed  publisher | 
|  | Hocevar B. Loss of Disabled-2 Expression in Pancreatic Cancer Progression. Sci Rep. 2019;9:7532 pubmed  publisher | 
|  | Zhang H, Brown R, Wei Y, Zhao P, Liu S, Liu X, et al . CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev. 2019;33:166-179 pubmed  publisher | 
|  | Kozono S, Lin Y, Seo H, Pinch B, Lian X, Qiu C, et al . Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun. 2018;9:3069 pubmed  publisher | 
|  | Abel E, Goto M, Magnuson B, Abraham S, Ramanathan N, Hotaling E, et al . HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. elife. 2018;7: pubmed  publisher | 
|  | Kumar B, Prasad M, Bhat Nakshatri P, Anjanappa M, Kalra M, Marino N, et al . Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade. Cancer Res. 2018;78:5107-5123 pubmed  publisher | 
|  | Bak M, FURMANSKI P, Shan N, Lee H, Bao C, Lin Y, et al . Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis. 2018;: pubmed  publisher | 
|  | Zhou Z, Li M, Zhang L, Zhao H, Sahin O, Chen J, et al . Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Cancer Res. 2018;78:2248-2261 pubmed  publisher | 
|  | Browne A, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S, et al . Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene. 2018;37:2008-2021 pubmed  publisher | 
|  | Zheng H, Pomyen Y, Hernandez M, Li C, Livak F, Tang W, et al . Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 2018;68:127-140 pubmed  publisher | 
|  | Anjanappa M, Hao Y, Simpson E, Bhat Nakshatri P, Nelson J, Tersey S, et al . A system for detecting high impact-low frequency mutations in primary tumors and metastases. Oncogene. 2018;37:185-196 pubmed  publisher | 
|  | Owen J, Komarck C, Wang A, Abuzeid W, Keep R, McKean E, et al . UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2018;128:701-709 pubmed  publisher | 
|  | Nandy S, Orozco A, Lopez Valdez R, Roberts R, Subramani R, Arumugam A, et al . Glucose insult elicits hyperactivation of cancer stem cells through miR-424-cdc42-prdm14 signalling axis. Br J Cancer. 2017;117:1665-1675 pubmed  publisher | 
|  | Ruiz Torres S, Benight N, Karns R, Lower E, Guan J, Waltz S. HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical ?-catenin signaling. Oncotarget. 2017;8:58918-58933 pubmed  publisher | 
|  | Yang C, Zhao X, Cui N, Liang Y. Cadherins Associate with Distinct Stem Cell-Related Transcription Factors to Coordinate the Maintenance of Stemness in Triple-Negative Breast Cancer. Stem Cells Int. 2017;2017:5091541 pubmed  publisher | 
|  | Mateo F, Arenas E, Aguilar H, Serra Musach J, de Garibay G, Boni J, et al . Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene. 2017;36:2737-2749 pubmed  publisher | 
|  | Czerwińska P, Shah P, Tomczak K, Klimczak M, Mazurek S, Sozańska B, et al . TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget. 2017;8:863-882 pubmed  publisher | 
|  | Calibasi Kocal G, Güven S, Foygel K, Goldman A, Chen P, Sengupta S, et al . Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci Rep. 2016;6:38221 pubmed  publisher | 
|  | Zaleska K, Suchorska W, Przybyła A, Murawa D. Effect of surgical wound fluids after intraoperative electron radiotherapy on the cancer stem cell phenotype in a panel of human breast cancer cell lines. Oncol Lett. 2016;12:3707-3714 pubmed | 
|  | Vazquez Santillan K, Melendez Zajgla J, Jimenez Hernandez L, Gaytan Cervantes J, Muñoz Galindo L, Pina Sanchez P, et al . NF-kappa?-inducing kinase regulates stem cell phenotype in breast cancer. Sci Rep. 2016;6:37340 pubmed  publisher | 
|  | Chen J, Shin V, Siu M, Ho J, Cheuk I, Kwong A. miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer. 2016;16:887 pubmed | 
|  | Weitzenfeld P, Meshel T, Ben Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget. 2016;7:81123-81143 pubmed  publisher | 
|  | Gao X, Sishc B, Nelson C, Hahnfeldt P, Bailey S, Hlatky L. Radiation-Induced Reprogramming of Pre-Senescent Mammary Epithelial Cells Enriches Putative CD44(+)/CD24(-/low) Stem Cell Phenotype. Front Oncol. 2016;6:138 pubmed  publisher | 
|  | Fang W, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, et al . Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 2016;7:49349-49367 pubmed  publisher | 
|  | Liu R, Shi P, Nie Z, Liang H, Zhou Z, Chen W, et al . Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression. Theranostics. 2016;6:533-44 pubmed  publisher | 
|  | Sishc B, Nelson C, McKenna M, Battaglia C, Herndon A, Idate R, et al . Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Front Oncol. 2015;5:257 pubmed  publisher | 
|  | Fan C, Wang Y, Liu Z, Sun Y, Wang X, Wei G, et al . Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer. Int J Mol Med. 2015;36:204-14 pubmed  publisher | 
|  | Mi K, Xing Z. CD44(+)/CD24(-) breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold. Int J Nanomedicine. 2015;10:3043-53 pubmed  publisher | 
|  | Nakashima S, Kobayashi S, Nagano H, Tomokuni A, Tomimaru Y, Asaoka T, et al . BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer. Cancer Sci. 2015;106:584-91 pubmed  publisher | 
|  | Segatto I, Berton S, Sonego M, Massarut S, Perin T, Piccoli E, et al . Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling. Oncotarget. 2014;5:6267-79 pubmed | 
|  | Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt M, Hatziapostolou M, et al . XBP1 promotes triple-negative breast cancer by controlling the HIF1? pathway. Nature. 2014;508:103-107 pubmed  publisher | 
|  | Prat A, Karginova O, Parker J, Fan C, He X, Bixby L, et al . Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142:237-55 pubmed  publisher | 
|  | Zhang S, Long H, Yang Y, Wang Y, Hsieh D, Li W, et al . Inhibition of CK2? down-regulates Notch1 signalling in lung cancer cells. J Cell Mol Med. 2013;17:854-62 pubmed  publisher | 
|  | Yin H, Glass J. The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS ONE. 2011;6:e24080 pubmed  publisher |