product summary
Loading...
company name :
Alomone Labs
product type :
chemical
product name :
ω-Agatoxin IVA
catalog :
STA-500
more info or order :
citations: 76
Reference
Cook D, Ryan T. GABABR silencing of nerve terminals. elife. 2023;12: pubmed publisher
Wang C, Hsieh P, Kuo J, Wang S. Rosmarinic Acid, a Bioactive Phenolic Compound, Inhibits Glutamate Release from Rat Cerebrocortical Synaptosomes through GABAA Receptor Activation. Biomolecules. 2021;11: pubmed publisher
Nikolaev Y, Feketa V, Anderson E, Schneider E, Gracheva E, Bagriantsev S. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Sci Adv. 2020;6: pubmed publisher
Gauberg J, Abdallah S, Elkhatib W, Harracksingh A, Piekut T, Stanley E, et al. Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem. 2020;295:18553-18578 pubmed publisher
Govindaiah G, Campbell P, Guido W. Differential Distribution of Ca2+ Channel Subtypes at Retinofugal Synapses. Eneuro. 2020;7: pubmed publisher
Chamberland S, Timofeeva Y, Evstratova A, Norman C, Volynski K, Toth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse. 2020;74:e22178 pubmed publisher
Bikbaev A, Ciuraszkiewicz Wojciech A, Heck J, Klatt O, Freund R, Mitlöhner J, et al. Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development. J Neurosci. 2020;40:4824-4841 pubmed publisher
Radulović T, Dong W, Goral R, Thomas C, Veeraraghavan P, Montesinos M, et al. Presynaptic development is controlled by the core active zone proteins CAST/ELKS. J Physiol. 2020;598:2431-2452 pubmed publisher
Ferron L, Novazzi C, Pilch K, Moreno C, Ramgoolam K, Dolphin A. FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis. 2020;138:104779 pubmed publisher
Avazzadeh S, McDonagh K, Reilly J, Wang Y, Boomkamp S, McInerney V, et al. Increased Ca2+ signaling in NRXN1α +/- neurons derived from ASD induced pluripotent stem cells. Mol Autism. 2019;10:52 pubmed publisher
Barron T, Kim J. Neuronal input triggers Ca2+ influx through AMPA receptors and voltage-gated Ca2+ channels in oligodendrocytes. Glia. 2019;67:1922-1932 pubmed publisher
McNally B, Plante A, Meredith A. Diurnal properties of voltage-gated Ca2+ currents in suprachiasmatic nucleus and roles in action potential firing. J Physiol. 2020;598:1775-1790 pubmed publisher
Rodrigues A, Wang Z, Messi M, Delbono O. Sympathomimetics regulate neuromuscular junction transmission through TRPV1, P/Q- and N-type Ca2+ channels. Mol Cell Neurosci. 2019;95:59-70 pubmed publisher
Chen S, Yu C, Rong L, Li C, Qin X, Ryu H, et al. Altered Synaptic Vesicle Release and Ca2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci. 2018;11:478 pubmed publisher
Lübbert M, Goral R, Keine C, Thomas C, Guerrero Given D, Putzke T, et al. CaV2.1 α1 Subunit Expression Regulates Presynaptic CaV2.1 Abundance and Synaptic Strength at a Central Synapse. Neuron. 2019;101:260-273.e6 pubmed publisher
Smith M, Katsouri L, Virtue S, Choudhury A, Vidal Puig A, Ashford M, et al. Calcium Channel CaV2.3 Subunits Regulate Hepatic Glucose Production by Modulating Leptin-Induced Excitation of Arcuate Pro-opiomelanocortin Neurons. Cell Rep. 2018;25:278-287.e4 pubmed publisher
Cheng P, Wang Y, Chen Y, Cheng R, Yang J, Huang R. Differential regulation of nimodipine-sensitive and -insensitive Ca2+ influx by the Na+/Ca2+ exchanger and mitochondria in the rat suprachiasmatic nucleus neurons. J Biomed Sci. 2018;25:44 pubmed publisher
Folci A, Steinberger A, Lee B, Stanika R, Scheruebel S, Campiglio M, et al. Molecular mimicking of C-terminal phosphorylation tunes the surface dynamics of CaV1.2 calcium channels in hippocampal neurons. J Biol Chem. 2018;293:1040-1053 pubmed publisher
Goldspink D, Lu V, Billing L, Larraufie P, Tolhurst G, Gribble F, et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells. Mol Metab. 2018;7:90-101 pubmed publisher
Beske P, Hoffman K, Machamer J, Eisen M, McNutt P. Use-dependent potentiation of voltage-gated calcium channels rescues neurotransmission in nerve terminals intoxicated by botulinum neurotoxin serotype A. Sci Rep. 2017;7:15862 pubmed publisher
Casas Torremocha D, Clascá F, Nunez A. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices. Front Neural Circuits. 2017;11:69 pubmed publisher
Bavassano C, Eigentler A, Stanika R, Obermair G, Boesch S, Dechant G, et al. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells. Stem Cells Dev. 2017;26:1612-1625 pubmed publisher
Weon H, Kim T, Youn D. Postsynaptic N-type or P/Q-type calcium channels mediate long-term potentiation by group I metabotropic glutamate receptors in the trigeminal oralis. Life Sci. 2017;188:110-117 pubmed publisher
Nagy B, Hovhannisyan A, Barzan R, Chen T, Kukley M. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol. 2017;15:e2001993 pubmed publisher
Lübbert M, Goral R, Satterfield R, Putzke T, van den Maagdenberg A, Kamasawa N, et al. A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. elife. 2017;6: pubmed publisher
Koren D, Grove J, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron. 2017;95:914-927.e4 pubmed publisher
Margolis E, Fujita W, Devi L, Fields H. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology. 2017;123:420-432 pubmed publisher
Chamberland S, Evstratova A, Toth K. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels. J Neurosci. 2017;37:4913-4927 pubmed publisher
Liang M, Yin X, Shi H, Li C, Li X, Song N, et al. Bilirubin augments Ca2+ load of developing bushy neurons by targeting specific subtype of voltage-gated calcium channels. Sci Rep. 2017;7:431 pubmed publisher
de Juan Sanz J, Holt G, Schreiter E, De Juan F, Kim D, Ryan T. Axonal Endoplasmic Reticulum Ca2+ Content Controls Release Probability in CNS Nerve Terminals. Neuron. 2017;93:867-881.e6 pubmed publisher
Squecco R, Idrizaj E, Morelli A, Gallina P, Vannelli G, Francini F. An electrophysiological study on the effects of BDNF and FGF2 on voltage dependent Ca(2+) currents in developing human striatal primordium. Mol Cell Neurosci. 2016;75:50-62 pubmed publisher
Luster B, Urbano F, Garcia Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep. 2016;4: pubmed publisher
Hara M, Zhou Z, Hemmings H. α2-Adrenergic Receptor and Isoflurane Modulation of Presynaptic Ca2+ Influx and Exocytosis in Hippocampal Neurons. Anesthesiology. 2016;125:535-46 pubmed publisher
Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci. 2016;10:135 pubmed publisher
D Onofrio S, Urbano F, Messias E, Garcia Rill E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol Rep. 2016;4: pubmed publisher
Pennock R, Hentges S. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse. J Neurophysiol. 2016;115:2376-88 pubmed publisher
Sugino S, Farrag M, Ruiz Velasco V. Gα14 subunit-mediated inhibition of voltage-gated Ca2+ and K+ channels via neurokinin-1 receptors in rat celiac-superior mesenteric ganglion neurons. J Neurophysiol. 2016;115:1577-86 pubmed publisher
Zhou L, Yang D, Wang D, Xie Y, Zhou J, Zhou L, et al. Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proc Natl Acad Sci U S A. 2015;112:15474-9 pubmed publisher
Gerencser A, Mulder H, Nicholls D. Calcium modulation of exocytosis-linked plasma membrane potential oscillations in INS-1 832/13 cells. Biochem J. 2015;471:111-22 pubmed publisher
Pais R, Gribble F, Reimann F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides. 2016;77:9-15 pubmed publisher
Hirst C, Foong J, Stamp L, Fegan E, Dent S, Cooper E, et al. Ion channel expression in the developing enteric nervous system. PLoS ONE. 2015;10:e0123436 pubmed publisher
Perissinotti P, Ethington E, Almazan E, Martínez Hernández E, Kalil J, Koob M, et al. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice. Front Cell Neurosci. 2014;8:444 pubmed publisher
Gan K, Silverman M. Dendritic and axonal mechanisms of Ca2+ elevation impair BDNF transport in Aβ oligomer-treated hippocampal neurons. Mol Biol Cell. 2015;26:1058-71 pubmed publisher
Duan J, Hodgdon K, Hingtgen C, Nicol G. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice. Neuroscience. 2014;270:192-202 pubmed publisher
Ferron L, Nieto Rostro M, Cassidy J, Dolphin A. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat Commun. 2014;5:3628 pubmed publisher
Chipman P, Zhang Y, Rafuse V. A stem-cell based bioassay to critically assess the pathology of dysfunctional neuromuscular junctions. PLoS ONE. 2014;9:e91643 pubmed publisher
Jones S, Stuart G. Different calcium sources control somatic versus dendritic SK channel activation during action potentials. J Neurosci. 2013;33:19396-405 pubmed publisher
Yang L, Topia I, Schneider T, Stephens G. Phorbol ester modulation of Ca2+ channels mediates nociceptive transmission in dorsal horn neurones. Pharmaceuticals (Basel). 2013;6:777-87 pubmed publisher
Alamilla J, Gillespie D. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. PLoS ONE. 2013;8:e75688 pubmed publisher
Cocks G, Romanyuk N, Amemori T, Jendelova P, Forostyak O, Jeffries A, et al. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res Ther. 2013;4:69 pubmed publisher
Izquierdo Serra M, Trauner D, Llobet A, Gorostiza P. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci. 2013;6:3 pubmed publisher
Koch H, Zanella S, Elsen G, Smith L, Doi A, Garcia A, et al. Stable respiratory activity requires both P/Q-type and N-type voltage-gated calcium channels. J Neurosci. 2013;33:3633-45 pubmed publisher
Izquierdo Serra M, Trauner D, Llobet A, Gorostiza P. Optical control of calcium-regulated exocytosis. Biochim Biophys Acta. 2013;1830:2853-60 pubmed
Kailey B, van de Bunt M, Cheley S, Johnson P, MacDonald P, Gloyn A, et al. SSTR2 is the functionally dominant somatostatin receptor in human pancreatic ?- and ?-cells. Am J Physiol Endocrinol Metab. 2012;303:E1107-16 pubmed publisher
Won Y, Ono F, Ikeda S. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons. PLoS ONE. 2012;7:e42602 pubmed publisher
Piekarz A, Due M, Khanna M, Wang B, Ripsch M, Wang R, et al. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol Pain. 2012;8:54 pubmed publisher
Baillie L, Ahn A, Mulligan S. Sumatriptan inhibition of N-type calcium channel mediated signaling in dural CGRP terminal fibres. Neuropharmacology. 2012;63:362-7 pubmed publisher
Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci. 2012;15:988-97 pubmed publisher
Talbot J, David G, Barrett E, Barrett J. Calcium dependence of damage to mouse motor nerve terminals following oxygen/glucose deprivation. Exp Neurol. 2012;234:95-104 pubmed publisher
Tobin V, Douglas A, Leng G, Ludwig M. The involvement of voltage-operated calcium channels in somato-dendritic oxytocin release. PLoS ONE. 2011;6:e25366 pubmed publisher
Liu S, Aungst J, Puche A, Shipley M. Serotonin modulates the population activity profile of olfactory bulb external tufted cells. J Neurophysiol. 2012;107:473-83 pubmed publisher
Hempel C, Sivula M, Levenson J, Rose D, Li B, Sirianni A, et al. A system for performing high throughput assays of synaptic function. PLoS ONE. 2011;6:e25999 pubmed publisher
Wang Y, Khanna R. VOLTAGE-GATED CALCIUM CHANNELS ARE NOT AFFECTED BY THE NOVEL ANTI-EPILEPTIC DRUG LACOSAMIDE. Transl Neurosci. 2011;2:13-22 pubmed
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex. 2012;22:584-94 pubmed publisher
Martel P, Leo D, Fulton S, Bérard M, Trudeau L. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS ONE. 2011;6:e20402 pubmed publisher
Alle H, Kubota H, Geiger J. Sparse but highly efficient Kv3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J Neurosci. 2011;31:8001-12 pubmed publisher
Myoga M, Regehr W. Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses. J Neurosci. 2011;31:5235-43 pubmed publisher
Gasperini R, Hou X, Parkington H, Coleman H, Klaver D, Vincent A, et al. TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons. Mol Neurodegener. 2011;6:19 pubmed publisher
Craviso G, Choe S, Chatterjee P, Chatterjee I, Vernier P. Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol. 2010;30:1259-65 pubmed publisher
Lu S, Zhang X, Luo Z, Gold M. Persistent inflammation alters the density and distribution of voltage-activated calcium channels in subpopulations of rat cutaneous DRG neurons. Pain. 2010;151:633-43 pubmed publisher
Wang Y, Ren C, Manis P. Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons. Hear Res. 2010;270:101-9 pubmed publisher
Zucca S, Valenzuela C. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons. J Neurosci. 2010;30:6776-81 pubmed publisher
Demel S, Dong H, Swain G, Wang X, Kreulen D, Galligan J. Antioxidant treatment restores prejunctional regulation of purinergic transmission in mesenteric arteries of deoxycorticosterone acetate-salt hypertensive rats. Neuroscience. 2010;168:335-45 pubmed publisher
Inoue T, Bryant B. Multiple cation channels mediate increases in intracellular calcium induced by the volatile irritant, trans-2-pentenal in rat trigeminal neurons. Cell Mol Neurobiol. 2010;30:35-41 pubmed publisher
Wicher D, Derst C, Gautier H, Lapied B, Heinemann S, Agricola H. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity. Front Cell Neurosci. 2007;1:3 pubmed publisher
Donato R, Page K, Koch D, Nieto Rostro M, Foucault I, Davies A, et al. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J Neurosci. 2006;26:12576-86 pubmed
image
image 1 :
Alomone Labs STA-500 image 1
Alomone Labs ?-Agatoxin IVA potently inhibits CaV2.1 channel currents expressed in HEK 293 cells. - CaV2.1 currents were elicited by 40 ms voltage ramp from a holding potential of -100 mV to +60 mV applied every 10 sec using whole-cell voltage clamp technique. Left: Superimposed traces of CaV2.1 currents under control conditions (black) and following 2 min perfusion with Alomone Labs 200 nM?-Agatoxin IVA(red). Right: Time course of CaV2.1 peak current amplitude change as a result of the application of 200 nM ?-Agatoxin IVA (duration of perfusion indicated by horizontal bar).
image 2 :
Alomone Labs STA-500 image 2
Alomone Labs FPL 64176 increases L-type CaVchannels currents expressed inXenopusoocytes. - A. Time course of CaV1.2 (co expressed with ?2?1 and ?1 auxiliary subunits) tail peak current amplitude elicited by 100 ms voltage step from holding potential of -100 mV to -10 mV delivered every 10 seconds. Application of 0.1 and 1 MFPL 64176(#F-160) increases the CaV1.2 current (indicated by the horizontal bar). B. Representative current traces before and during application of 0.1 and 1 M FPL 64176 (as indicated).
product information
cat :
STA-500
SKU :
STA-500_0.1 mg
Product Name :
ω-Agatoxin IVA
Group Type :
Non Antibodies
Product Type :
Proteins
Accession :
P30288
Accession Number :
https://www.uniprot.org/uniprotkb/P30288/entry
Applications :
Electrophysiology
Formulation :
Lyophilized from double distilled water (ddH2O). May contain TFA as a residual counter ion.
Storage After Reconstitution :
The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods (up to 6 months), small aliquots should be stored at -20°C. We do not recommend storing the product in working solutions for longer than a few days. Avoid multiple freeze-thaw cycles.
Reconstitution and Solubility :
Centrifuge the vial (10,000 × g for 5 minutes) before adding solvent to spin down all the powder to the bottom of the vial. The lyophilized product may be difficult to visualize. Add solvent directly to the centrifuged vial. Gently tap, tilt, and roll the vial to aid dissolution. Avoid vigorous vortexing; light vortexing for up to 3 seconds is acceptable if needed. The product is soluble in pure water at high micromolar concentrations (100 µM - 1 mM). For long-term storage in solution, we recommend preparing a stock solution by dissolving the product in double-distilled water (ddH2O) at a concentration between 100-1000x of the final working concentration. Divide the stock solution into small aliquots and store at -20°C. Before use, thaw the relevant vial(s) and dilute to the desired working concentration in your working buffer. Centrifuge all product preparations before use. It is recommended to prepare fresh solutions in working buffers just before use. Avoid multiple freeze-thaw cycles to maintain biological activity.
Solubility :
Centrifuge the vial before adding solvent (10,000 x g for 5 minutes) to spin down all the powder to the bottom of the vial. The lyophilized product may be difficult to visualize. Add solvent directly to the centrifuged vial. Tap the vial to aid in dissolving the lyophilized product. Tilt and gently roll the liquid over the walls of the vial. Avoid vigorous vortexing. Light vortexing for up to 3 seconds is acceptable if needed. The product is soluble in pure water at high micromolar concentrations (100 µM - 1 mM). For long-term storage in solution, we recommend preparing a stock solution by dissolving the product in double-distilled water (ddH2O) at a concentration between 100-1000x of the final working concentration. Divide the stock solution into small aliquots and store at -20°C. Before use, thaw the relevant vial(s) and dilute to the desired working concentration in your working buffer. Centrifuge all product preparations before use. It is recommended to prepare fresh solutions in working buffers just before use. Avoid multiple freeze-thaw cycles to maintain biological activity.
Storage Before Reconstitution :
The product is shipped as a lyophilized powder at room temperature. Upon receipt, store the product at -20°C. Protect from moisture.
Origin :
Agelenopsis aperta (North American funnel-web spider) (Agelenopsis gertschi)
Source :
Synthetic peptide
Gene ID :
CACNA1A
Product Page - Scientific background :
Native ω-Agatoxin IVA (ω-Aga-IVA) was originally isolated from Agelenopsis aperta spider venom, and was shown to be a selective blocker of CaV2.1 (P/Q type) channels1. However, the sensitivity depends on the auxiliary b subunit isoform2 and on the splice variant3. Therefore, the effective concentration varies between systems. In accordance, the toxin blocks presynaptic Ca2+ currents and synaptic transmission in a variety of synapses4,5.ω-Agatoxin IVA is widely used in electrophysiological measurements of cloned and native channels6,7. It is used to assess the role of CaV2.1 channels in synaptic transmission4. In addition, it was used to map the spatial distribution of CaV2.1 channels in mouse cerebellar and hippocampal brain slices8.
Supplier :
Alomone Labs
Target :
P-type Ca2+ channels
Long Description :
A Blocker of P/Q-Type CaV Channels
Short Description :
A Blocker of P/Q-Type CaV Channels
MW :
5202 Da
Synonyms :
Omega-agatoxin-Aa4a, ω-AGTX-Aa4a, ω-Aga-IVA, ω-agatoxin-4A
Modifications :
Disulfide bonds between: Cys4-Cys20, Cys12-Cys25, Cys19-Cys36 and Cys27-Cys34
Molecular formula :
C217H360N68O60S10
Effective Concentration :
20 nM - 1 µM
Activity :
ω-Agatoxin IVA is an antagonist of voltage-sensitive P-type Ca2+ channels1. It blocks neuromuscular transmission presynaptically in a variety of synapses2,3.
Storage of solutions :
The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods (up to 6 months), small aliquots should be stored at -20°C. We do not recommend storing the product in working solutions for longer than a few days. Avoid multiple freeze-thaw cycles.
Lead Time :
1-2 Business Days
Country of origin :
Israel/IL
Purity :
≥98% (HPLC)
CAS No :
145017-83-0
Form :
Lyophilized
Comment :
Contact Alomone Labs for technical support and product customization
Sequence :
KKKCIAKDYGRCKWGGTPCCRGRGCICSIMGTNCECKPR
LIMEGLGLA-OH
Is Toxin :
Yes
UNSPSC :
12352202
Bioassay Tested :
yes
Steril endotoxin free :
no
Cited Application :
Electrophysiology
more info or order :
company information
Alomone Labs
Jerusalem BioPark (JBP), Hadassah Ein Kerem
P.O. Box 4287
Jerusalem 9104201
info@alomone.com
http://www.alomone.com
972 2 531 8002
headquarters: Israel