product summary
Loading...
company name :
Alomone Labs
product type :
chemical
product name :
QX-314 chloride
catalog :
Q-150
more info or order :
citations: 46
Reference
Lee E, Lee S, Shin J, Choi W, Chung C, Lee S, et al. Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice. Nat Commun. 2021;12:5116 pubmed publisher
Hanemaaijer N, Popovic M, Wilders X, Grasman S, Pavón Arocas O, Kole M. Ca2+ entry through NaV channels generates submillisecond axonal Ca2+ signaling. elife. 2020;9: pubmed publisher
Rich M, Huang Y, Torregrossa M. Plasticity at Thalamo-amygdala Synapses Regulates Cocaine-Cue Memory Formation and Extinction. Cell Rep. 2019;26:1010-1020.e5 pubmed publisher
Irie T, Trussell L. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing. Neuron. 2017;96:856-870.e4 pubmed publisher
Butola T, Wichmann C, Moser T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front Synaptic Neurosci. 2017;9:14 pubmed publisher
Lamotte D Incamps B, Bhumbra G, Foster J, Beato M, Ascher P. Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse. Sci Rep. 2017;7:4037 pubmed publisher
Dickie A, Mccormick B, Lukito V, Wilson K, Torsney C. Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord. J Neurosci. 2017;37:6488-6502 pubmed publisher
Ransom C, Ye Z, Spain W, Richerson G. Modulation of Tonic GABA Currents by Anion Channel and Connexin Hemichannel Antagonists. Neurochem Res. 2017;42:2551-2559 pubmed publisher
Beckley J, Laguesse S, Phamluong K, Morisot N, Wegner S, Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J Neurosci. 2016;36:701-13 pubmed publisher
Gunn B, Cunningham L, Cooper M, Corteen N, Seifi M, Swinny J, et al. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J Neurosci. 2013;33:19534-54 pubmed publisher
Khelfaoui M, Gambino F, Houbaert X, Ragazzon B, Muller C, Carta M, et al. Lack of the presynaptic RhoGAP protein oligophrenin1 leads to cognitive disabilities through dysregulation of the cAMP/PKA signalling pathway. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130160 pubmed publisher
Suvrathan A, Bennur S, Ghosh S, Tomar A, Anilkumar S, Chattarji S. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130151 pubmed publisher
Scheuss V, Bonhoeffer T. Function of dendritic spines on hippocampal inhibitory neurons. Cereb Cortex. 2014;24:3142-53 pubmed publisher
Quattrocolo G, Maccaferri G. Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus. J Neurosci. 2013;33:5486-98 pubmed publisher
Tao W, Higgs M, Spain W, Ransom C. Postsynaptic GABAB receptors enhance extrasynaptic GABAA receptor function in dentate gyrus granule cells. J Neurosci. 2013;33:3738-43 pubmed publisher
Ransom C, Tao W, Wu Y, Spain W, Richerson G. Rapid regulation of tonic GABA currents in cultured rat hippocampal neurons. J Neurophysiol. 2013;109:803-12 pubmed publisher
Henson M, Larsen R, Lawson S, Pérez Otaño I, Nakanishi N, Lipton S, et al. Genetic deletion of NR3A accelerates glutamatergic synapse maturation. PLoS ONE. 2012;7:e42327 pubmed publisher
Marchionni I, Takács V, Nunzi M, Mugnaini E, Miller R, Maccaferri G. Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol. 2010;588:2859-78 pubmed publisher
Rinke I, Artmann J, Stein V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J Neurosci. 2010;30:4776-86 pubmed publisher
Wrobel L, Reymond Marron I, DuPre A, Raggenbass M. Oxytocin and vasopressin enhance synaptic transmission in the hypoglossal motor nucleus of young rats by acting on distinct receptor types. Neuroscience. 2010;165:723-35 pubmed publisher
Kuo S, Bradley L, Trussell L. Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem. J Neurosci. 2009;29:9625-34 pubmed publisher
Pilpel Y, Kolleker A, Berberich S, Ginger M, Frick A, Mientjes E, et al. Synaptic ionotropic glutamate receptors and plasticity are developmentally altered in the CA1 field of Fmr1 knockout mice. J Physiol. 2009;587:787-804 pubmed publisher
Watanabe K, Kita T, Kita H. Presynaptic actions of D2-like receptors in the rat cortico-striato-globus pallidus disynaptic connection in vitro. J Neurophysiol. 2009;101:665-71 pubmed publisher
Hermann J, Grothe B, Klug A. Modeling short-term synaptic plasticity at the calyx of Held using in vivo-like stimulation patterns. J Neurophysiol. 2009;101:20-30 pubmed publisher
Olijslagers J, de Kloet E, Elgersma Y, van Woerden G, Joels M, Karst H. Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci. 2008;27:2542-50 pubmed publisher
Graciotti L, Minelli A, Minciacchi D, Procopio A, Fulgenzi G. GABAergic miniature spontaneous activity is increased in the CA1 hippocampal region of dystrophic mdx mice. Neuromuscul Disord. 2008;18:220-6 pubmed publisher
Vikman K, Rycroft B, Christie M. Switch to Ca2+-permeable AMPA and reduced NR2B NMDA receptor-mediated neurotransmission at dorsal horn nociceptive synapses during inflammatory pain in the rat. J Physiol. 2008;586:515-27 pubmed
Abrahamsson T, Gustafsson B, Hanse E. Reversible synaptic depression in developing rat CA3 CA1 synapses explained by a novel cycle of AMPA silencing-unsilencing. J Neurophysiol. 2007;98:2604-11 pubmed
Fujiwara Tsukamoto Y, Isomura Y, Imanishi M, Fukai T, Takada M. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci. 2007;25:2713-25 pubmed
Zhang H, Chen S, Pan H. Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes. J Neurophysiol. 2007;97:102-9 pubmed
Hige T, Fujiyoshi Y, Takahashi T. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats. Eur J Neurosci. 2006;24:1955-66 pubmed
Tu B, Jiao Y, Herzog H, Nadler J. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity. Neuroscience. 2006;143:1085-94 pubmed
Boddy G, Willis A, Galante G, Daniel E. Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WV mice. Can J Physiol Pharmacol. 2006;84:589-99 pubmed
Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A. 2005;102:19204-7 pubmed
Abrahamsson T, Gustafsson B, Hanse E. Synaptic fatigue at the naive perforant path-dentate granule cell synapse in the rat. J Physiol. 2005;569:737-50 pubmed
Ishikawa T, Kaneko M, Shin H, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol. 2005;568:199-209 pubmed
Karst H, Joels M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol. 2005;94:3479-86 pubmed
Bhaukaurally K, Panatier A, Poulain D, Oliet S. Voltage-gated Ca2+ channel subtypes mediating GABAergic transmission in the rat supraoptic nucleus. Eur J Neurosci. 2005;21:2459-66 pubmed
Panatier A, Poulain D, Oliet S. Regulation of transmitter release by high-affinity group III mGluRs in the supraoptic nucleus of the rat hypothalamus. Neuropharmacology. 2004;47:333-41 pubmed
Bailey S, Dhillon A, Woodhall G, Jones R. Lamina-specific differences in GABA(B) autoreceptor-mediated regulation of spontaneous GABA release in rat entorhinal cortex. Neuropharmacology. 2004;46:31-42 pubmed
Fujiwara Tsukamoto Y, Isomura Y, Nambu A, Takada M. Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience. 2003;119:265-75 pubmed
Azdad K, Piet R, Poulain D, Oliet S. Dopamine D4 receptor-mediated presynaptic inhibition of GABAergic transmission in the rat supraoptic nucleus. J Neurophysiol. 2003;90:559-65 pubmed
Mori M, Gerber U. Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5. J Physiol. 2002;544:793-9 pubmed
Mannaioni G, Marino M, Valenti O, Traynelis S, Conn P. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci. 2001;21:5925-34 pubmed
Lupica C, Bell J, Hoffman A, Watson P. Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol. 2001;86:261-8 pubmed
Zaninetti M, Raggenbass M. Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur J Neurosci. 2000;12:3975-84 pubmed
image
image 1 :
Alomone Labs Q-150 image 1
Alomone Labs QX-314 chloride inhibits native NaV1.5 currents expressed inXenopusoocytes. - Dose-response ofQX-314 chloride(#Q-150) inhibition on inward Na+currents. Using two electrode voltage clamps membrane potential was held at -100 mV and currents were elicited by 25 ms depolarization to -20 mV delivered every 5 sec. Left: Dose-response curve for one experiment. Right: Traces before (red) and during bath application of different concentrations of QX-314 chloride.
image 2 :
Alomone Labs Q-150 image 2
product information
CAT :
Q-150
SKU :
Q-150_1 g
Product Name :
QX-314 chloride
Group Type :
Non Antibodies
Product Type :
S. Molecules
Shipping and storage :
Shipped at room temperature. Product as supplied can be stored intact at room temperature for several weeks. For longer periods, it should be stored at -20°C
Product Page - Scientific background :
This local anesthetic is a blocker of voltage-dependent Na+ channels. QX-314 blocks all NaV channels once exposed to the intracellular face of the channel protein. However, this compound can penetrate the cell interior once applied outside the cell. Via certain types of NaV channels, it can permeate and exert blocking activity via TTX-sensitive channels.1 Intracellular recordings from inferior olivary neurons in brain stem slice preparations demonstrated that Na+-dependent action potentials were completely blocked for approximately five minutes after impalement with a microelectrode containing 50 mM QX-314, whereas the low-threshold Ca2+ spike was still generated.2 QX-314 is widely used to block NaV channels and used as a tool in neurophysiological recordings.2-5
Supplier :
Alomone Labs
Target :
Various NaV Na+ channels
Long Description :
QX-314 chloride (#Q-150) is a highly pure, synthetic, and biologically active compound.
Short Description :
A Local Anesthetic Blocker of NaV Channels
MW :
298.85
Synonyms :
Lidocaine N-ethyl chloride
Source :
Synthetic
Molecular formula :
C16H27N2OCl.
Effective Concentration :
1-50 mM.
Activity :
QX-314 chloride is an intracellular blocker of NaV channels1-4.
Reconstitution and Solubility :
Centrifuge the vial before adding solvent (10,000 x g for 5 minutes) to spin down all the powder to the bottom of the vial. The lyophilized product may be difficult to visualize. Add solvent directly to the centrifuged vial. Tap the vial to aid in dissolving the lyophilized product. Tilt and gently roll the liquid over the walls of the vial. Avoid vigorous vortexing. Light vortexing for up to 3 seconds is acceptable if needed. The product is lyophilized in 0.5 ml conical vial. The product is soluble in pure water to high-micromolar concentrations (5 µM - 1 mM). For long-term storage in solution, we recommend preparing a stock solution by dissolving the product in double distilled water (ddH2O) at a concentration between 100-1000x of the final working concentration. Divide the stock solution into small aliquots and store at -20°C. Before use, thaw the relevant vial(s) and dilute to the desired working concentration in your working buffer. Centrifuge all product preparations before use. It is recommended to prepare fresh solutions in working buffers just before use. Avoid multiple freeze-thaw cycles to maintain biological activity. Avoid exposure to light.
Solubility :
Water. Centrifuge all product preparations before use (10000 x g 5 min).
Storage of solutions :
Up to two weeks at 4°C or six months at -20°C. Protect from light. Hygroscopic.
Lead Time :
1-2 Business Days
Country of origin :
Israel/IL
Applications key :
Application key: FC- Flow cytometry, IFC- Indirect flow cytometry, IHC- Immunohistochemistry,LCI- Live cell imaging, Calcium imaging assay,Cell survival assay, Electrophysiology, Neurite outgrowth assay.
Purity :
>99% (HPLC)
CAS No :
########
Form :
Lyophilized Powder
Comment :
Contact Alomone Labs for technical support and product customization
UNSPSC :
41116134
Bioassay Tested :
Yes
Cited Application :
Electrophysiology
Chemical Name :
N-(2,6-Dimethylphenylcarbamoylmethyl) triethylammonium chloride.
more info or order :
company information
Alomone Labs
Jerusalem BioPark (JBP), Hadassah Ein Kerem
P.O. Box 4287
Jerusalem 9104201
info@alomone.com
http://www.alomone.com
972 2 531 8002
headquarters: Israel