product summary
Loading...
company name :
Alomone Labs
product type :
chemical
product name :
ω-Conotoxin GVIA
catalog :
C-300
more info or order :
citations: 89
Reference
Wang C, Hsieh P, Kuo J, Wang S. Rosmarinic Acid, a Bioactive Phenolic Compound, Inhibits Glutamate Release from Rat Cerebrocortical Synaptosomes through GABAA Receptor Activation. Biomolecules. 2021;11: pubmed publisher
Bhandari P, Vandael D, Fernández Fernández D, Fritzius T, Kleindienst D, Önal C, et al. GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. elife. 2021;10: pubmed publisher
Gauberg J, Abdallah S, Elkhatib W, Harracksingh A, Piekut T, Stanley E, et al. Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem. 2020;295:18553-18578 pubmed publisher
Govindaiah G, Campbell P, Guido W. Differential Distribution of Ca2+ Channel Subtypes at Retinofugal Synapses. Eneuro. 2020;7: pubmed publisher
Chamberland S, Timofeeva Y, Evstratova A, Norman C, Volynski K, Toth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse. 2020;74:e22178 pubmed publisher
Bikbaev A, Ciuraszkiewicz Wojciech A, Heck J, Klatt O, Freund R, Mitlöhner J, et al. Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development. J Neurosci. 2020;40:4824-4841 pubmed publisher
Radulović T, Dong W, Goral R, Thomas C, Veeraraghavan P, Montesinos M, et al. Presynaptic development is controlled by the core active zone proteins CAST/ELKS. J Physiol. 2020;598:2431-2452 pubmed publisher
McCarthy C, Chou Freed C, Rodríguez S, Yaneff A, Davio C, Raingo J. Constitutive activity of dopamine receptor type 1 (D1R) increases CaV2.2 currents in PFC neurons. J Gen Physiol. 2020;152: pubmed publisher
Ferron L, Novazzi C, Pilch K, Moreno C, Ramgoolam K, Dolphin A. FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis. 2020;138:104779 pubmed publisher
Meyer J, Dahimene S, Page K, Ferron L, Kadurin I, Ellaway J, et al. Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking. Cell Rep. 2019;29:22-33.e5 pubmed publisher
Kirchner M, Armstrong W, Guan D, Ueta Y, FOEHRING R. PIP2 alters of Ca2+ currents in acutely dissociated supraoptic oxytocin neurons. Physiol Rep. 2019;7:e14198 pubmed publisher
McNally B, Plante A, Meredith A. Diurnal properties of voltage-gated Ca2+ currents in suprachiasmatic nucleus and roles in action potential firing. J Physiol. 2020;598:1775-1790 pubmed publisher
Silm K, Yang J, Marcott P, Asensio C, Eriksen J, Guthrie D, et al. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron. 2019;102:786-800.e5 pubmed publisher
Rodrigues A, Wang Z, Messi M, Delbono O. Sympathomimetics regulate neuromuscular junction transmission through TRPV1, P/Q- and N-type Ca2+ channels. Mol Cell Neurosci. 2019;95:59-70 pubmed publisher
Kearney G, Zorrilla de San Martín J, Vattino L, Elgoyhen A, Wedemeyer C, Katz E. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse. J Neurosci. 2019;39:3360-3375 pubmed publisher
Chen S, Yu C, Rong L, Li C, Qin X, Ryu H, et al. Altered Synaptic Vesicle Release and Ca2+ Influx at Single Presynaptic Terminals of Cortical Neurons in a Knock-in Mouse Model of Huntington's Disease. Front Mol Neurosci. 2018;11:478 pubmed publisher
Lübbert M, Goral R, Keine C, Thomas C, Guerrero Given D, Putzke T, et al. CaV2.1 α1 Subunit Expression Regulates Presynaptic CaV2.1 Abundance and Synaptic Strength at a Central Synapse. Neuron. 2019;101:260-273.e6 pubmed publisher
Dahimene S, Page K, Kadurin I, Ferron L, Ho D, Powell G, et al. The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1. Cell Rep. 2018;25:1610-1621.e5 pubmed publisher
Smith M, Katsouri L, Virtue S, Choudhury A, Vidal Puig A, Ashford M, et al. Calcium Channel CaV2.3 Subunits Regulate Hepatic Glucose Production by Modulating Leptin-Induced Excitation of Arcuate Pro-opiomelanocortin Neurons. Cell Rep. 2018;25:278-287.e4 pubmed publisher
Bagalkot T, Terhune R, Leblanc N, Craviso G. Different Membrane Pathways Mediate Ca2+ Influx in Adrenal Chromaffin Cells Exposed to 150-400 ns Electric Pulses. Biomed Res Int. 2018;2018:9046891 pubmed publisher
Cheng P, Wang Y, Chen Y, Cheng R, Yang J, Huang R. Differential regulation of nimodipine-sensitive and -insensitive Ca2+ influx by the Na+/Ca2+ exchanger and mitochondria in the rat suprachiasmatic nucleus neurons. J Biomed Sci. 2018;25:44 pubmed publisher
Kim J, Choi S, Lee S, Park K. Voltage-dependent Ca2+ channels promote branching morphogenesis of salivary glands by patterning differential growth. Sci Rep. 2018;8:7566 pubmed publisher
Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, et al. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun. 2018;9:1504 pubmed publisher
Moutal A, Sun L, Yang X, Li W, Cai S, Luo S, et al. CRMP2-Neurofibromin Interface Drives NF1-related Pain. Neuroscience. 2018;381:79-90 pubmed publisher
Alles S, Garcia E, Balasubramanyan S, Jones K, Tyson J, Joy T, et al. Peripheral nerve injury increases contribution of L-type calcium channels to synaptic transmission in spinal lamina II: Role of α2δ-1 subunits. Mol Pain. 2018;14:1744806918765806 pubmed publisher
ULLMAN J, Yang J, Sullivan M, Bendor J, Levy J, Pham E, et al. A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry. Nat Commun. 2018;9:330 pubmed publisher
Lübbert M, Goral R, Satterfield R, Putzke T, van den Maagdenberg A, Kamasawa N, et al. A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. elife. 2017;6: pubmed publisher
Koren D, Grove J, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron. 2017;95:914-927.e4 pubmed publisher
Zhang D, Tu H, Wang C, Cao L, Muelleman R, Wadman M, et al. Correlation of Ventricular Arrhythmogenesis with Neuronal Remodeling of Cardiac Postganglionic Parasympathetic Neurons in the Late Stage of Heart Failure after Myocardial Infarction. Front Neurosci. 2017;11:252 pubmed publisher
de Juan Sanz J, Holt G, Schreiter E, De Juan F, Kim D, Ryan T. Axonal Endoplasmic Reticulum Ca2+ Content Controls Release Probability in CNS Nerve Terminals. Neuron. 2017;93:867-881.e6 pubmed publisher
Hsu H, Lo Y, Huang Y, Tseng Y, Wu S. Important modifications by sugammadex, a modified ?-cyclodextrin, of ion currents in differentiated NSC-34 neuronal cells. BMC Neurosci. 2017;18:6 pubmed publisher
Li Q, Michel K, Annahazi A, Demir I, Ceyhan G, Zeller F, et al. Anti-Hu antibodies activate enteric and sensory neurons. Sci Rep. 2016;6:38216 pubmed publisher
Grimsley C, Green D, Sivaramakrishnan S. L-type calcium channels refine the neural population code of sound level. J Neurophysiol. 2016;116:2550-2563 pubmed publisher
Tang W, Thevathasan J, Lin Q, Lim K, Kuroda K, Kaibuchi K, et al. Stimulation of Synaptic Vesicle Exocytosis by the Mental Disease Gene DISC1 is Mediated by N-Type Voltage-Gated Calcium Channels. Front Synaptic Neurosci. 2016;8:15 pubmed publisher
Squecco R, Idrizaj E, Morelli A, Gallina P, Vannelli G, Francini F. An electrophysiological study on the effects of BDNF and FGF2 on voltage dependent Ca(2+) currents in developing human striatal primordium. Mol Cell Neurosci. 2016;75:50-62 pubmed publisher
Luster B, Urbano F, Garcia Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep. 2016;4: pubmed publisher
Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci. 2016;10:135 pubmed publisher
Chang Q, Martin L. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis. 2016;93:78-95 pubmed publisher
Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, et al. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 2016;16:622-34 pubmed publisher
D Onofrio S, Urbano F, Messias E, Garcia Rill E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol Rep. 2016;4: pubmed publisher
Pennock R, Hentges S. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse. J Neurophysiol. 2016;115:2376-88 pubmed publisher
Xie L, Dolai S, Kang Y, Liang T, Xie H, Qin T, et al. Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS ONE. 2016;11:e0147862 pubmed publisher
López Soto E, Agosti F, Cabral A, Mustafa E, Damonte V, Gandini M, et al. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. J Gen Physiol. 2015;146:205-19 pubmed publisher
D Arco M, Margas W, Cassidy J, Dolphin A. The upregulation of α2δ-1 subunit modulates activity-dependent Ca2+ signals in sensory neurons. J Neurosci. 2015;35:5891-903 pubmed publisher
Hirst C, Foong J, Stamp L, Fegan E, Dent S, Cooper E, et al. Ion channel expression in the developing enteric nervous system. PLoS ONE. 2015;10:e0123436 pubmed publisher
Gan K, Silverman M. Dendritic and axonal mechanisms of Ca2+ elevation impair BDNF transport in Aβ oligomer-treated hippocampal neurons. Mol Biol Cell. 2015;26:1058-71 pubmed publisher
Kim Y, Ahn D, Joeng J, Chung S. Suppression of peripheral sympathetic activity underlies protease-activated receptor 2-mediated hypotension. Korean J Physiol Pharmacol. 2014;18:489-95 pubmed publisher
Kim Y, Ahn D, Kim M, Joeng J, Chung S. Protease-activated receptor 2 activation inhibits N-type Ca2+ currents in rat peripheral sympathetic neurons. Mol Cells. 2014;37:804-11 pubmed publisher
Chang E, Chen X, Kim M, Gong N, Bhatia S, Luo Z. Differential effects of voltage-gated calcium channel blockers on calcium channel alpha-2-delta-1 subunit protein-mediated nociception. Eur J Pain. 2015;19:639-48 pubmed publisher
Cassidy J, Ferron L, Kadurin I, Pratt W, Dolphin A. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. Proc Natl Acad Sci U S A. 2014;111:8979-84 pubmed publisher
Duan J, Hodgdon K, Hingtgen C, Nicol G. N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice. Neuroscience. 2014;270:192-202 pubmed publisher
Pérez Burgos A, Mao Y, Bienenstock J, Kunze W. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse". FASEB J. 2014;28:3064-74 pubmed publisher
Ferron L, Nieto Rostro M, Cassidy J, Dolphin A. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat Commun. 2014;5:3628 pubmed publisher
Wen H, Hubbard J, Rakela B, Linhoff M, Mandel G, Brehm P. Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources. elife. 2013;2:e01206 pubmed publisher
Jones S, Stuart G. Different calcium sources control somatic versus dendritic SK channel activation during action potentials. J Neurosci. 2013;33:19396-405 pubmed publisher
Yang L, Topia I, Schneider T, Stephens G. Phorbol ester modulation of Ca2+ channels mediates nociceptive transmission in dorsal horn neurones. Pharmaceuticals (Basel). 2013;6:777-87 pubmed publisher
Gómez Sánchez R, Gegg M, Bravo San Pedro J, Niso Santano M, Alvarez Erviti L, Pizarro Estrella E, et al. Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis. 2014;62:426-40 pubmed publisher
Alamilla J, Gillespie D. Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. PLoS ONE. 2013;8:e75688 pubmed publisher
Wedemeyer C, Zorrilla de San Martín J, Ballestero J, Gómez Casati M, Torbidoni A, Fuchs P, et al. Activation of presynaptic GABA(B(1a,2)) receptors inhibits synaptic transmission at mammalian inhibitory cholinergic olivocochlear-hair cell synapses. J Neurosci. 2013;33:15477-87 pubmed publisher
Hernández González O, Hernández Flores T, Prieto G, Perez Burgos A, Arias García M, Galarraga E, et al. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons. Purinergic Signal. 2014;10:269-81 pubmed publisher
Cocks G, Romanyuk N, Amemori T, Jendelova P, Forostyak O, Jeffries A, et al. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res Ther. 2013;4:69 pubmed publisher
Kim S, Ryan T. Balance of calcineurin A? and CDK5 activities sets release probability at nerve terminals. J Neurosci. 2013;33:8937-50 pubmed publisher
Wen H, Linhoff M, Hubbard J, Nelson N, Stensland D, Dallman J, et al. Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission. J Neurosci. 2013;33:7384-92 pubmed publisher
Izquierdo Serra M, Trauner D, Llobet A, Gorostiza P. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci. 2013;6:3 pubmed publisher
Izquierdo Serra M, Trauner D, Llobet A, Gorostiza P. Optical control of calcium-regulated exocytosis. Biochim Biophys Acta. 2013;1830:2853-60 pubmed
Won Y, Ono F, Ikeda S. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons. PLoS ONE. 2012;7:e42602 pubmed publisher
Piekarz A, Due M, Khanna M, Wang B, Ripsch M, Wang R, et al. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol Pain. 2012;8:54 pubmed publisher
Baillie L, Ahn A, Mulligan S. Sumatriptan inhibition of N-type calcium channel mediated signaling in dural CGRP terminal fibres. Neuropharmacology. 2012;63:362-7 pubmed publisher
Abitbol K, McLean H, Bessiron T, Daniel H. A new signalling pathway for parallel fibre presynaptic type 4 metabotropic glutamate receptors (mGluR4) in the rat cerebellar cortex. J Physiol. 2012;590:2977-94 pubmed publisher
Ferrari D, Mdzomba B, Dehorter N, Lopez C, Michel F, Libersat F, et al. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups. Front Cell Neurosci. 2012;6:7 pubmed publisher
Tobin V, Douglas A, Leng G, Ludwig M. The involvement of voltage-operated calcium channels in somato-dendritic oxytocin release. PLoS ONE. 2011;6:e25366 pubmed publisher
Wang S, Chen X, Kurada L, Huang Z, Lei S. Activation of group II metabotropic glutamate receptors inhibits glutamatergic transmission in the rat entorhinal cortex via reduction of glutamate release probability. Cereb Cortex. 2012;22:584-94 pubmed publisher
Martel P, Leo D, Fulton S, Bérard M, Trudeau L. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS ONE. 2011;6:e20402 pubmed publisher
Alle H, Kubota H, Geiger J. Sparse but highly efficient Kv3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J Neurosci. 2011;31:8001-12 pubmed publisher
Craviso G, Choe S, Chatterjee P, Chatterjee I, Vernier P. Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol. 2010;30:1259-65 pubmed publisher
Lu S, Zhang X, Luo Z, Gold M. Persistent inflammation alters the density and distribution of voltage-activated calcium channels in subpopulations of rat cutaneous DRG neurons. Pain. 2010;151:633-43 pubmed publisher
Andrade A, Denome S, Jiang Y, Marangoudakis S, Lipscombe D. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing. Nat Neurosci. 2010;13:1249-56 pubmed publisher
Zorrilla de San Martín J, Pyott S, Ballestero J, Katz E. Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse. J Neurosci. 2010;30:12157-67 pubmed publisher
Zucca S, Valenzuela C. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons. J Neurosci. 2010;30:6776-81 pubmed publisher
Demel S, Dong H, Swain G, Wang X, Kreulen D, Galligan J. Antioxidant treatment restores prejunctional regulation of purinergic transmission in mesenteric arteries of deoxycorticosterone acetate-salt hypertensive rats. Neuroscience. 2010;168:335-45 pubmed publisher
Kerr M, Wang J, Castro N, Hamilton N, Town L, Brown D, et al. Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J. 2010;29:1331-47 pubmed publisher
Almog M, Korngreen A. Characterization of voltage-gated Ca(2+) conductances in layer 5 neocortical pyramidal neurons from rats. PLoS ONE. 2009;4:e4841 pubmed publisher
Wu Z, Cai Y, Pan H. A functional link between T-type calcium channels and mu-opioid receptor expression in adult primary sensory neurons. J Neurochem. 2009;109:867-78 pubmed publisher
Demel S, Galligan J. Impaired purinergic neurotransmission to mesenteric arteries in deoxycorticosterone acetate-salt hypertensive rats. Hypertension. 2008;52:322-9 pubmed publisher
Xiao Y, RICHTER J, Hurley J. Release of glutamate and CGRP from trigeminal ganglion neurons: Role of calcium channels and 5-HT1 receptor signaling. Mol Pain. 2008;4:12 pubmed publisher
El Yazbi A, Cho W, Cena J, Schulz R, Daniel E. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine. J Cell Mol Med. 2008;12:1404-15 pubmed publisher
Németh B, Ledent C, Freund T, Hajos N. CB1 receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2. Neuropharmacology. 2008;54:51-7 pubmed
Williams E, Walsh F, Doherty P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol. 2003;160:481-6 pubmed
Gromada J, Bokvist K, Ding W, Barg S, Buschard K, Renstrom E, et al. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol. 1997;110:217-28 pubmed
image
image 1 :
Alomone Labs C-300 image 1
Knockdown of FMRP enhances synaptic vesicle exocytosis in presynaptic terminals of DRG neurons via CaV2.2 channels. - A and B. vGpH response to 40 AP at 10 Hz from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (A) or FMRP shRNA (B) before and after treatment with?-Conotoxin GVIA(#C-300) and?-Agatoxin IVA(#STA-500). Fluorescence intensities were normalized to the peak of a brief application of NH4Cl. C. Normalized vGpH responses to 40 AP at 10 Hz from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (black-filled bar100.106 n = 38) or FMRP shRNA (red open bar 137.012.6% n = 25 P = 0.027). ?-Conotoxin GVIA (ConoTx) reduces Ctrl shRNA and FMRP shRNA responses to a similar level (44.74.9% n = 15 and 41.63.3% n = 24 respectively). ?-Conotoxin GVIA and ?-Agatoxin IVA (AgaTx) application reduces further the responses: Ctrl shRNA = 17.33.2% n = 38 and FMRP shRNA = 18.15.0% n = 27. D. Average vGpH response to a 40 Hz stimulation for 30 s from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (blackfilled squares) or FMRP shRNA (open red squares).Adapted fromFerron L.et al.(2014)with permission of Springer Nature.
image 2 :
Alomone Labs C-300 image 2
Knockdown of FMRP enhances synaptic vesicle exocytosis in presynaptic terminals of DRG neurons via CaV2.2 channels. - A and B. vGpH response to 40 AP at 10 Hz from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (A) or FMRP shRNA (B) before and after treatment with?-Conotoxin GVIA(#C-300) and?-Agatoxin IVA(#STA-500). Fluorescence intensities were normalized to the peak of a brief application of NH4Cl. C. Normalized vGpH responses to 40 AP at 10 Hz from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (black-filled bar100.106 n = 38) or FMRP shRNA (red open bar 137.012.6% n = 25 P = 0.027). ?-Conotoxin GVIA (ConoTx) reduces Ctrl shRNA and FMRP shRNA responses to a similar level (44.74.9% n = 15 and 41.63.3% n = 24 respectively). ?-Conotoxin GVIA and ?-Agatoxin IVA (AgaTx) application further reducesthe responses: Ctrl shRNA = 17.33.2% n = 38 and FMRP shRNA = 18.15.0% n = 27. D. Average vGpH response to a 40 Hz stimulation for 30 s from presynaptic terminals of DRG neurons transfected with Ctrl shRNA (blackfilled squares) or FMRP shRNA (open red squares).Adapted fromFerron L.et al.(2014)with permission of Springer Nature.
product information
cat :
C-300
SKU :
C-300_0.1 mg
Product Name :
ω-Conotoxin GVIA
Group Type :
Non Antibodies
Product Type :
Proteins
Accession :
P01522
Accession Number :
https://www.uniprot.org/uniprotkb/P01522/entry
Applications :
Electrophysiology
Formulation :
Lyophilized from double distilled water (ddH2O). May contain TFA as a residual counter ion.
Storage After Reconstitution :
The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods (up to 6 months), small aliquots should be stored at -20°C. We do not recommend storing the product in working solutions for longer than a few days. Avoid multiple freeze-thaw cycles.
Reconstitution and Solubility :
Centrifuge the vial (10,000 × g for 5 minutes) before adding solvent to spin down all the powder to the bottom of the vial. The lyophilized product may be difficult to visualize. Add solvent directly to the centrifuged vial. Gently tap, tilt, and roll the vial to aid dissolution. Avoid vigorous vortexing; light vortexing for up to 3 seconds is acceptable if needed. The product is soluble in pure water at high micromolar concentrations (100 µM - 1 mM). For long-term storage in solution, we recommend preparing a stock solution by dissolving the product in double-distilled water (ddH2O) at a concentration between 100-1000x of the final working concentration. Divide the stock solution into small aliquots and store at -20°C. Before use, thaw the relevant vial(s) and dilute to the desired working concentration in your working buffer. Centrifuge all product preparations before use. It is recommended to prepare fresh solutions in working buffers just before use. Avoid multiple freeze-thaw cycles to maintain biological activity.
Solubility :
Centrifuge the vial before adding solvent (10,000 x g for 5 minutes) to spin down all the powder to the bottom of the vial. The lyophilized product may be difficult to visualize. Add solvent directly to the centrifuged vial. Tap the vial to aid in dissolving the lyophilized product. Tilt and gently roll the liquid over the walls of the vial. Avoid vigorous vortexing. Light vortexing for up to 3 seconds is acceptable if needed. The product is soluble in pure water at high micromolar concentrations (100 µM - 1 mM). For long-term storage in solution, we recommend preparing a stock solution by dissolving the product in double-distilled water (ddH2O) at a concentration between 100-1000x of the final working concentration. Divide the stock solution into small aliquots and store at -20°C. Before use, thaw the relevant vial(s) and dilute to the desired working concentration in your working buffer. Centrifuge all product preparations before use. It is recommended to prepare fresh solutions in working buffers just before use. Avoid multiple freeze-thaw cycles to maintain biological activity.
Storage Before Reconstitution :
The product is shipped as a lyophilized powder at room temperature. Upon receipt, store the product at -20°C. Protect from moisture.
Origin :
Conus geographus (Geography cone) (Nubecula geographus)
Source :
Synthetic peptide
Gene ID :
CACNA1B
Product Page - Scientific background :
ω-Conotoxin GVIA is a synthetic toxin originally isolated from the Conus geographus. ω-Conotoxin GVIA is a specific blocker of CaV2.2 Ca2+ channels. It specifically blocks N-type CaV channels by binding to the CaV2.2 α1 subunit (α1B) and its action is only partially reversible.2,3 In accordance, it inhibits synaptic transmission in many systems.4 It is also reported to antagonize P2X receptors.5 The toxin is used to specifically investigate CaV2.2 channel's contributions (by subtraction of the activity before and during perfusion of the toxin). Alternatively, it is used to eliminate the N-type channel contribution to highlight some other channel or enzyme activity. ω-Conotoxin GVIA was also used to purify the channel protein using immunoprecipitation techniques and to label and localize channels and synapses.6
Supplier :
Alomone Labs
Target :
N-type Ca2+ channels
Long Description :
A Blocker of N-Type Ca2+ Channels
Short Description :
A Blocker of N-Type Ca2+ Channels
MW :
3037 Da
Synonyms :
SNX-124
Modifications :
Disulfide bonds between: Cys1-Cys16, Cys8-Cys19 and Cys15-Cys26 X = Hydroxyproline Tyr27 - C-terminal amidation
Molecular formula :
C120H182N38O43S6
Effective Concentration :
20 nM - 1 μM
Activity :
ω-Conotoxin GVIA specifically and reversibly blocks N-type CaV channels1 and is reported to antagonize P2X receptors2.
Storage of solutions :
The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods (up to 6 months), small aliquots should be stored at -20°C. We do not recommend storing the product in working solutions for longer than a few days. Avoid multiple freeze-thaw cycles.
Lead Time :
1-2 Business Days
Country of origin :
Israel/IL
Purity :
≥99% (HPLC)
CAS No :
106375-28-4
Form :
Lyophilized
Comment :
Contact Alomone Labs for technical support and product customization
Sequence :
CKSXGSSCSXTSYNCCRSCNXYTKRCY-NH2
Is Toxin :
Yes
UNSPSC :
12352202
Bioassay Tested :
yes
Steril endotoxin free :
no
Cited Application :
Electrophysiology
more info or order :
company information
Alomone Labs
Jerusalem BioPark (JBP), Hadassah Ein Kerem
P.O. Box 4287
Jerusalem 9104201
info@alomone.com
http://www.alomone.com
972 2 531 8002
headquarters: Israel