product summary
Loading...
company name :
Alomone Labs
product type :
antibody
product name :
Anti-Kir4.1 (KCNJ10) Antibody
catalog :
APC-035
clonality :
polyclonal
host :
domestic rabbit
conjugate :
nonconjugated
clone name :
NA
reactivity :
human, mouse, rat
application :
western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, immunohistochemistry - paraffin section, immunohistochemistry - frozen section, immunohistochemistry knockout validation
more info or order :
citations: 57
Published Application/Species/Sample/DilutionReference
  • immunohistochemistry knockout validation; mouse; 1:100; loading ...; fig 4a
Mapps A, Boehm E, Beier C, Keenan W, Langel J, Liu M, et al. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. elife. 2022;11: pubmed publisher
  • immunocytochemistry; human; 1:1000; loading ...; fig 6d
Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed publisher
  • immunohistochemistry; mouse; 1:1000; loading ...; fig 1a
Poli G, Hasan S, Belia S, Cenciarini M, Tucker S, Imbrici P, et al. Kcnj16 (Kir5.1) Gene Ablation Causes Subfertility and Increases the Prevalence of Morphologically Abnormal Spermatozoa. Int J Mol Sci. 2021;22: pubmed publisher
  • immunohistochemistry; mouse; 1:400; loading ...; fig 3e
Díaz Lezama N, Wolf A, Koch S, Pfaller A, Biber J, Guillonneau X, et al. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci. 2021;22: pubmed publisher
  • immunohistochemistry - frozen section; mouse; 1:200; loading ...; fig 7s1a
Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed publisher
  • immunohistochemistry; mouse; 1:300; fig 5
Ingham N, Carlisle F, Pearson S, Lewis M, Buniello A, Chen J, et al. S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse. Sci Rep. 2016;6:28964 pubmed publisher
  • immunohistochemistry - paraffin section; human; 4 ug/ml; fig 3
Koeppen A, Ramirez R, Becker A, Mazurkiewicz J. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46 pubmed publisher
  • immunohistochemistry - frozen section; human; 1:500; fig 7
Liu W, Edin F, Blom H, Magnusson P, Schrott Fischer A, Glueckert R, et al. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tissue Res. 2016;365:13-27 pubmed publisher
  • immunohistochemistry - frozen section; rat; 1:600; loading ...; fig 4a
  • western blot; rat; 1:800; loading ...; fig 2a
Najafi E, Stoodley M, Bilston L, Hemley S. Inwardly rectifying potassium channel 4.1 expression in post-traumatic syringomyelia. Neuroscience. 2016;317:23-35 pubmed publisher
Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, et al. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell. 2023;14:180-201 pubmed publisher
Hyndman K, Isaeva E, Palygin O, Mendoza L, Rodan A, Staruschenko A, et al. Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis. Physiol Rep. 2021;9:e15080 pubmed publisher
Muto Y, Wilson P, Ledru N, Wu H, Dimke H, Waikar S, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 2021;12:2190 pubmed publisher
Takano T, Wallace J, Baldwin K, Purkey A, Uezu A, Courtland J, et al. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature. 2020;588:296-302 pubmed publisher
Smith K, Murphy P, Jagger D. Divergent membrane properties of mouse cochlear glial cells around hearing onset. J Neurosci Res. 2021;99:679-698 pubmed publisher
Götz S, Bribian A, López Mascaraque L, Gotz M, Grothe B, Kunz L. Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia. 2021;69:346-361 pubmed publisher
Bucher F, Aguilar E, Marra K, Rapp J, Arnold J, Diaz Aguilar S, et al. CNTF Prevents Development of Outer Retinal Neovascularization Through Upregulation of CxCl10. Invest Ophthalmol Vis Sci. 2020;61:20 pubmed publisher
Sheng L, Stewart T, Yang D, Thorland E, Soltys D, Aro P, et al. Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson's disease pathogenesis. Acta Neuropathol Commun. 2020;8:102 pubmed publisher
Padmashri R, Ren B, Oldham B, Jung Y, Gough R, Dunaevsky A. Modeling human-specific interlaminar astrocytes in the mouse cerebral cortex. J Comp Neurol. 2021;529:802-810 pubmed publisher
Wu P, Su X, Gao Z, Zhang D, Duan X, Xiao Y, et al. Renal Tubule Nedd4-2 Deficiency Stimulates Kir4.1/Kir5.1 and Thiazide-Sensitive NaCl Cotransporter in Distal Convoluted Tubule. J Am Soc Nephrol. 2020;31:1226-1242 pubmed publisher
Limbad C, Oron T, Alimirah F, Davalos A, Tracy T, Gan L, et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE. 2020;15:e0227887 pubmed publisher
Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, et al. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci. 2019;12:316 pubmed publisher
Tian C, Johnson K. TBX1 is required for normal stria vascularis and semicircular canal development. Dev Biol. 2020;457:91-103 pubmed publisher
Miwa T, Minoda R, Ishikawa Y, Kajii T, Orita Y, Ohyama T. Role of Dach1 revealed using a novel inner ear-specific Dach1-knockdown mouse model. Biol Open. 2019;8: pubmed publisher
Liu T, Li G, Noble K, Li Y, Barth J, Schulte B, et al. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging. 2019;80:210-222 pubmed publisher
Fischer R, Roux A, Wareham L, Sappington R. Pressure-dependent modulation of inward-rectifying K+ channels: implications for cation homeostasis and K+ dynamics in glaucoma. Am J Physiol Cell Physiol. 2019;317:C375-C389 pubmed publisher
Luo Q, Xiao Y, Alex A, Cummins T, Bhatwadekar A. The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. Invest Ophthalmol Vis Sci. 2019;60:1928-1936 pubmed publisher
Kinboshi M, Shimizu S, Mashimo T, Serikawa T, Ito H, Ikeda A, et al. Down-Regulation of Astrocytic Kir4.1 Channels during the Audiogenic Epileptogenesis in Leucine-Rich Glioma-Inactivated 1 (Lgi1) Mutant Rats. Int J Mol Sci. 2019;20: pubmed publisher
Rao S, Katoozi S, Skauli N, Froehner S, Ottersen O, Adams M, et al. Targeted deletion of β1-syntrophin causes a loss of Kir 4.1 from Müller cell endfeet in mouse retina. Glia. 2019;67:1138-1149 pubmed publisher
Shandra O, Winemiller A, Heithoff B, Muñoz Ballester C, George K, Benko M, et al. Repetitive Diffuse Mild Traumatic Brain Injury Causes an Atypical Astrocyte Response and Spontaneous Recurrent Seizures. J Neurosci. 2019;39:1944-1963 pubmed publisher
Wood T, Barry J, Yang Z, Cepeda C, Levine M, Gray M. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington's disease mouse model. Hum Mol Genet. 2019;28:487-500 pubmed publisher
Cerrato V, Parmigiani E, Figueres Oñate M, Betizeau M, Aprato J, Nanavaty I, et al. Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol. 2018;16:e2005513 pubmed publisher
Skowrońska K, Obara Michlewska M, Czarnecka A, Dabrowska K, Zielinska M, Albrecht J. Persistent Overexposure to N-Methyl-D-Aspartate (NMDA) Calcium-Dependently Downregulates Glutamine Synthetase, Aquaporin 4, and Kir4.1 Channel in Mouse Cortical Astrocytes. Neurotox Res. 2019;35:271-280 pubmed publisher
Schirmer L, Mobius W, Zhao C, Cruz Herranz A, Ben Haim L, Cordano C, et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. elife. 2018;7: pubmed publisher
Yu X, Taylor A, Nagai J, GOLSHANI P, Evans C, Coppola G, et al. Reducing Astrocyte Calcium Signaling In Vivo Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron. 2018;99:1170-1187.e9 pubmed publisher
Mukai T, Kinboshi M, Nagao Y, Shimizu S, Ono A, Sakagami Y, et al. Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front Pharmacol. 2018;9:845 pubmed publisher
Malik S, Lambert E, Zhang J, Wang T, Clark H, Cypress M, et al. Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am J Physiol Renal Physiol. 2018;315:F1271-F1282 pubmed publisher
Zhang D, Gao Z, Vio C, Xiao Y, Wu P, Zhang H, et al. Bradykinin Stimulates Renal Na+ and K+ Excretion by Inhibiting the K+ Channel (Kir4.1) in the Distal Convoluted Tubule. Hypertension. 2018;72:361-369 pubmed publisher
Wang M, Su X, Wu P, Gao Z, Wang W, Staub O, et al. Kir5.1 regulates Nedd4-2-mediated ubiquitination of Kir4.1 in distal nephron. Am J Physiol Renal Physiol. 2018;315:F986-F996 pubmed publisher
Kelley K, Ben Haim L, Schirmer L, Tyzack G, Tolman M, Miller J, et al. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron. 2018;98:306-319.e7 pubmed publisher
Larson V, Mironova Y, Vanderpool K, Waisman A, Rash J, Agarwal A, et al. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. elife. 2018;7: pubmed publisher
Sharlin D, Ng L, Verrey F, Visser T, Liu Y, Olszewski R, et al. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep. 2018;8:4403 pubmed publisher
Kitaura H, Shirozu H, Masuda H, Fukuda M, Fujii Y, Kakita A. Pathophysiological Characteristics Associated With Epileptogenesis in Human Hippocampal Sclerosis. EBioMedicine. 2018;29:38-46 pubmed publisher
Thompson K, Chen J, Luo Q, Xiao Y, Cummins T, Bhatwadekar A. Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. PLoS ONE. 2018;13:e0193280 pubmed publisher
Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323-327 pubmed publisher
Sato M, Higuchi T, Nin F, Ogata G, Sawamura S, Yoshida T, et al. Hearing Loss Controlled by Optogenetic Stimulation of Nonexcitable Nonglial Cells in the Cochlea of the Inner Ear. Front Mol Neurosci. 2017;10:300 pubmed publisher
Liu W, Schrott Fischer A, Glueckert R, Benav H, Rask Andersen H. The Human "Cochlear Battery" - Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea. Front Mol Neurosci. 2017;10:239 pubmed publisher
Chai H, Diaz Castro B, Shigetomi E, Monte E, Octeau J, Yu X, et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron. 2017;95:531-549.e9 pubmed publisher
Silva J, Lopes A, Talbot J, Cecílio N, Rossato M, Silva R, et al. Neuroimmune-Glia Interactions in the Sensory Ganglia Account for the Development of Acute Herpetic Neuralgia. J Neurosci. 2017;37:6408-6422 pubmed publisher
Marangoni D, Yong Z, Kjellstrom S, Vijayasarathy C, A Sieving P, Bush R. Rearing Light Intensity Affects Inner Retinal Pathology in a Mouse Model of X-Linked Retinoschisis but Does Not Alter Gene Therapy Outcome. Invest Ophthalmol Vis Sci. 2017;58:1656-1664 pubmed publisher
Puissant M, Mouradian G, Liu P, Hodges M. Identifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels. Front Cell Neurosci. 2017;11:34 pubmed publisher
Blankenstein K, Borschewski A, Labes R, Paliege A, Boldt C, McCormick J, et al. Calcineurin inhibitor cyclosporine A activates renal Na-K-Cl cotransporters via local and systemic mechanisms. Am J Physiol Renal Physiol. 2017;312:F489-F501 pubmed publisher
Shibata S, Miwa T, Wu H, Levitt P, Ohyama T. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing. J Neurosci. 2016;36:8200-9 pubmed publisher
Lopez I, Ishiyama G, Hosokawa S, Hosokawa K, Acuna D, Linthicum F, et al. Immunohistochemical techniques for the human inner ear. Histochem Cell Biol. 2016;146:367-87 pubmed publisher
Vacca O, Charles Messance H, El Mathari B, Sene A, Barbe P, Fouquet S, et al. AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption. Hum Mol Genet. 2016;25:3070-3079 pubmed
Battefeld A, Klooster J, Kole M. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity. Nat Commun. 2016;7:11298 pubmed publisher
Zhang C, Su X, Bellner L, Lin D. Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity. Am J Physiol Cell Physiol. 2016;310:C993-C1000 pubmed publisher
Brasko C, Hawkins V, De La Rocha I, Butt A. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct. 2017;222:41-59 pubmed publisher
image
image 1 :
Alomone Labs APC-035 image 1
Western blot analysis of rat brain membranes: - 1. Anti-Kir4.1 (KCNJ10) Antibody (#APC-035), (1:400).2. Anti-Kir4.1 (KCNJ10) Antibody, preincubated with Kir4.1/KCNJ10 Blocking Peptide (#BLP-PC035).
image 2 :
Alomone Labs APC-035 image 2
Peptide (C)KLEESLREQAEKEGSALSVR corresponding to amino acid residues 356-375 of rat Kir4.1 (AccessionP49655). Intracellular C-terminus.
product information
CAT :
APC-035
SKU :
APC-035-CF_0.2 ml
Product Name :
Anti-Kir4.1 (KCNJ10) Antibody
Group Type :
Antibodies
Product Type :
Antibodies
Clonality :
Polyclonal
Accession :
P49655
Applications :
IC IF IHC IP WB
Reactivity :
Human Rat Mouse
Host :
Rabbit
Blocking Peptide :
BLP-PC035
Homology :
Human, mouse - identical
Formulation :
PBS pH7.4
isotype :
Rabbit IgG
Peptide confirmation :
Confirmed by amino acid analysis and mass spectrometry
Reconstitution :
0.2 ml double distilled water (DDW).
Antibody Concentration After Reconstitut ... :
1 mg/ml
Storage After Reconstitution :
The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods, small aliquots should be stored at -20°C. Avoid multiple freezing and thawing. Centrifuge all antibody preparations before use (10000 x g 5 min).
Preservative :
No Preservative
Immunogen Location :
Intracellular, C-terminus
Label :
Unconjugated
Storage Before Reconstitution :
The antibody ships as a lyophilized powder at room temperature. Upon arrival, it should be stored at -20°C
Shipping and storage :
Shipped at room temperature. Product as supplied can be stored intact at room temperature for several weeks. For longer periods, it should be stored at -20°C
immunogen source species :
Rat
Sequence :
(C)KLEE SLREQ AEKEG SALSV R, corresponding to amino acid residues 356-375 of rat Kir4.1
Product Page - Scientific background :
Kir4.1 is a member of the inward rectifying K+ channel family. The family includes 15 members that are structurally and functionally different from the voltage-dependent K+ channels.The family's topology consists of two transmembrane domains that flank a single and highly conserved pore region with intracellular N- and C-termini. As is the case for the voltage-dependent K+ channels the functional unit for the Kir channels is composed of four subunit that can assembly as either homo or heteromers.Kir channels are characterized by a K+ efflux that is limited by depolarizing membrane potentials thus making them essential for controlling resting membrane potential and K+ homeostasis.Kir4.1 is a member of the Kir4 subfamily that includes one other member: Kir4.2. Kir4.1 can co-assemble with Kir4.2 but also with other Kir channels such as Kir2.1 and Kir5.1.The Kir4 subfamily has been classified as weak rectifiers with intermediate conductance. Kir4.1, encoded by KCNJ10, is mainly expressed in brain, specifically in glia cells, but also in retina, ear and kidney.1,2It has been proposed that Kir4.1 has an essential role in glial K+ buffering, a process that re-uptakes the K+ released during neuronal activity into the intracellular interstitial space. Loss of Kir4.1 causes retinal defects and loss of endochoclear potential.3
Applications may also work in :
IC IF IHC IP WB
Supplier :
Alomone Labs
Target :
ATP-sensitive inward rectifier potassium channel 10, KAB-2, BIR10, BIRK1, Kir1.2, Potassium channel inwardly rectifying subfamily J member 10
Short Description :
A Rabbit Polyclonal Antibody to Kir4.1 (KCNJ10) Channel
Long Description :
Anti-Kir4.1 (KCNJ10) Antibody (#APC-035) is a highly specific antibody directed against an epitope of the rat protein. The antibody can be used in western blot, immunoprecipitation, immunohistochemistry, and immunocytochemistry applications. It has been designed to recognize Kir4.1 potassium channel from rat, mouse, and human samples.
Negative Control :
BLP-PC035
Positive Control :
NA
Synonyms :
ATP-sensitive inward rectifier potassium channel 10, KAB-2, BIR10, BIRK1, Kir1.2, Potassium channel inwardly rectifying subfamily J member 10
Lead Time :
1-2 Business Days
Country of origin :
Israel/IL
Applications key :
CBE- Cell-based ELISA, FC- Flow cytometry, ICC- Immunocytochemistry, IE- Indirect ELISA, IF- Immunofluorescence, IFC- Indirect flow cytometry, IHC- Immunohistochemistry, IP- Immunoprecipitation, LCI- Live cell imaging, N- Neutralization, WB- Western blot
Specifictiy :
KCNJ10
Form :
Lyophilized powder. Reconstituted antibody contains phosphate buffered saline (PBS), pH 7.4.
Comment :
Contact Alomone Labs for technical support and product customization
Species reactivity key :
H- Human, M- Mouse, R- Rat
Is Toxin :
No
Purity :
Affinity purified on immobilized antigen.
UNSPSC :
41116161
KO-Validated :
yes
Cited Application :
IP IHC ICC
Clone :
NA
Standard quality control of each lot :
Western blot analysis
Antigen preadsorption control :
1 µg peptide per 1 µg antibody
Application Dilutions: Immunohistochemis ... :
Contact Alomone for information
Application Dilutions: Western blot wb :
1:400
more info or order :
company information
Alomone Labs
Jerusalem BioPark (JBP), Hadassah Ein Kerem
P.O. Box 4287
Jerusalem 9104201
info@alomone.com
http://www.alomone.com
972 2 531 8002
headquarters: Israel