This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Addgene
product type :
cDNA
product name :
pT3TS-nCas9n
catalog :
46757
citations: 90
Reference
Zapilko V, Moisio S, Parikka M, Hein xe4 niemi M, Lohi O. Generation of a Zebrafish Knock-In Model Recapitulating Childhood ETV6::RUNX1-Positive B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel). 2023;15: pubmed publisher
Zhang R, Ma Z, Wang J, Fan C. HIF signaling overactivation inhibits lateral line neuromast development through Wnt in zebrafish. Gene. 2023;898:148077 pubmed publisher
Matsuoka Y, Murugesan S, Prakash A, Monteiro A. Lepidopteran prolegs are novel traits, not leg homologs. Sci Adv. 2023;9:eadd9389 pubmed publisher
Giardoglou P, Deloukas P, Dedoussis G, Beis D. Cfdp1 Is Essential for Cardiac Development and Function. Cells. 2023;12: pubmed publisher
Dasgupta S, LaDu J, Garcia G, Li S, Tomono Duval K, Rericha Y, et al. A CRISPR-Cas9 mutation in sox9b long intergenic noncoding RNA (slincR) affects zebrafish development, behavior, and regeneration. Toxicol Sci. 2023;194:153-166 pubmed publisher
Parab S, Card O, Chen Q, America M, Buck L, Quick R, et al. Local angiogenic interplay of Vegfc/d and Vegfa controls brain region-specific emergence of fenestrated capillaries. elife. 2023;12: pubmed publisher
Liang F, Lu X, Wu B, Yang Y, Qin W. Nucleolar Protein 56 Deficiency in Zebrafish Leads to Developmental Abnormalities and Anemia via p53 and JAK2-STAT3 Signaling. Biology (Basel). 2023;12: pubmed publisher
Dranow D, Le Pabic P, Schilling T. The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morphogenesis of the craniofacial skeleton in zebrafish. Development. 2023;150: pubmed publisher
Streiff C, He B, Morvan L, Zhang H, Delrez N, Fourrier M, et al. Susceptibility and Permissivity of Zebrafish (Danio rerio) Larvae to Cypriniviruses. Viruses. 2023;15: pubmed publisher
Liang F, Dong Z, Ye J, Hu W, Bhandari R, Mai K, et al. In vivo DNA methylation editing in zebrafish. Epigenetics. 2023;18:2192326 pubmed publisher
Baraban M, Gordillo Pi C, Bonnet I, Gilles J, Lejeune C, Cabrera M, et al. Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Dev Cell. 2023;58:361-375.e5 pubmed publisher
Prykhozhij S, Cáceres L, Ban K, Cordeiro Santanach A, Nagaraju K, Hoffman E, et al. Loss of calpain3b in Zebrafish, a Model of Limb-Girdle Muscular Dystrophy, Increases Susceptibility to Muscle Defects Due to Elevated Muscle Activity. Genes (Basel). 2023;14: pubmed publisher
Petel L xe9 gar xe9 V, Rampal C, Gurberg T, Aaltonen M, Janer A, Zinman L, et al. Loss of mitochondrial Chchd10 or Chchd2 in zebrafish leads to an ALS-like phenotype and Complex I deficiency independent of the mitochondrial integrated stress response. Dev Neurobiol. 2023;83:54-69 pubmed publisher
Boezio G, Zhao S, Gollin J, Priya R, Mansingh S, Guenther S, et al. The developing epicardium regulates cardiac chamber morphogenesis by promoting cardiomyocyte growth. Dis Model Mech. 2023;16: pubmed publisher
Wang J, Thomas H, Thompson R, Waldrep S, Fogerty J, Song P, et al. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech. 2022;15: pubmed publisher
Jiang Z, El Brolosy M, Serobyan V, Welker J, Retzer N, Dooley C, et al. Parental mutations influence wild-type offspring via transcriptional adaptation. Sci Adv. 2022;8:eabj2029 pubmed publisher
Leyhr J, Waldmann L, Filipek G xf3 rniok B, Zhang H, Allalou A, Haitina T. A novel cis-regulatory element drives early expression of Nkx3.2 in the gnathostome primary jaw joint. elife. 2022;11: pubmed publisher
Matsuoka Y, Monteiro A. Ultrabithorax modifies a regulatory network of genes essential for butterfly eyespot development in a wing sector-specific manner. Development. 2022;149: pubmed publisher
Bailon Zambrano R, Sucharov J, Mumme Monheit A, Murry M, Stenzel A, Pulvino A, et al. Variable paralog expression underlies phenotype variation. elife. 2022;11: pubmed publisher
Wang J, Thomas H, Chen Y, Percival S, Waldrep S, Ramaker R, et al. Reduced sister chromatid cohesion acts as a tumor penetrance modifier. PLoS Genet. 2022;18:e1010341 pubmed publisher
Liu F, Kambakam S, Almeida M, Ming Z, Welker J, Wierson W, et al. Cre/lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. elife. 2022;11: pubmed publisher
Liang F, Zhang Y, Li L, Yang Y, Fei J, Liu Y, et al. SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish. Nat Commun. 2022;13:3421 pubmed publisher
America M, Bostaille N, Eubelen M, Martin M, Stainier D, Vanhollebeke B. An integrated model for Gpr124 function in Wnt7a/b signaling among vertebrates. Cell Rep. 2022;39:110902 pubmed publisher
Vicencio J, S xe1 nchez Bola xf1 os C, Moreno S xe1 nchez I, Brena D, Vejnar C, Kukhtar D, et al. Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nat Commun. 2022;13:2601 pubmed publisher
Nathan F, Kibat C, Goel T, Stewart J, Claridge Chang A, Mathuru A. Contingent stimulus delivery assay for zebrafish reveals a role for CCSER1 in alcohol preference. Addict Biol. 2022;27:e13126 pubmed publisher
Habicher J, Varshney G, Waldmann L, Snitting D, Allalou A, Zhang H, et al. Chondroitin/dermatan sulfate glycosyltransferase genes are essential for craniofacial development. PLoS Genet. 2022;18:e1010067 pubmed publisher
Murugesan S, Connahs H, Matsuoka Y, Das Gupta M, Tiong G, Huq M, et al. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. Proc Natl Acad Sci U S A. 2022;119: pubmed publisher
Torregrosa Carrión R, Piñeiro Sabarís R, Siguero Álvarez M, Grego Bessa J, Luna Zurita L, Fernandes V, et al. Adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for placental development. Sci Adv. 2021;7:eabj5445 pubmed publisher
Moss J, Wirth M, Tooze S, Lane J, Hammond C. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J. 2021;35:e22002 pubmed publisher
Peña O, Lubin A, Rowell J, Hoade Y, Khokhar N, Lemmik H, et al. Differential Requirement of Gata2a and Gata2b for Primitive and Definitive Myeloid Development in Zebrafish. Front Cell Dev Biol. 2021;9:708113 pubmed publisher
Rajan V, Collett K, Woodside R, Prykhozhij S, Moksa M, Carles A, et al. Stress hematopoiesis induces a proliferative advantage in TET2 deficiency. Leukemia. 2021;: pubmed publisher
Liu Y, Liang F, Dong Z, Li S, Ye J, Qin W. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM. Cells. 2021;10: pubmed publisher
Waldmann L, Leyhr J, Zhang H, Öhman Mägi C, Allalou A, Haitina T. The broad role of Nkx3.2 in the development of the zebrafish axial skeleton. PLoS ONE. 2021;16:e0255953 pubmed publisher
Farmer D, Patel P, Choi R, Liu C, Crump J. Comprehensive series of Irx cluster mutants reveals diverse roles in facial cartilage development. Development. 2021;: pubmed publisher
Wang J, Thomas H, Li Z, Yeo N, Scott H, Dang N, et al. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death Dis. 2021;12:659 pubmed publisher
Li Y, Adur M, Wang W, Schultz R, Hale B, Wierson W, et al. Effect of ARTEMIS (DCLRE1C) deficiency and microinjection timing on editing efficiency during somatic cell nuclear transfer and in vitro fertilization using the CRISPR/Cas9 system. Theriogenology. 2021;170:107-116 pubmed publisher
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker J, et al. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep. 2021;22:e50958 pubmed publisher
Willoughby P, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, et al. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. elife. 2021;10: pubmed publisher
Hans S, Zöller D, Hammer J, Stucke J, Spieß S, Kesavan G, et al. Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nat Commun. 2021;12:1125 pubmed publisher
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, et al. Targeting lactate dehydrogenase A (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (Lond). 2020;40:501-517 pubmed publisher
Jin Y, Liao B, Migaud H, Davie A. Physiological impact and comparison of mutant screening methods in piwil2 KO founder Nile tilapia produced by CRISPR/Cas9 system. Sci Rep. 2020;10:12600 pubmed publisher
Wierson W, Welker J, Almeida M, Mann C, Webster D, Torrie M, et al. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. elife. 2020;9: pubmed publisher
Heigwer J, Kutzner J, Haeussler M, Burkhalter M, Draebing T, Juergensen L, et al. miR-103/107 regulates left-right asymmetry in zebrafish by modulating Kupffer's vesicle development and ciliogenesis. Biochem Biophys Res Commun. 2020;527:432-439 pubmed publisher
Luciani A, Schumann A, Berquez M, Chen Z, Nieri D, Failli M, et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun. 2020;11:970 pubmed publisher
Prykhozhij S, Cordeiro Santanach A, Cáceres L, Berman J. Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task. Methods Mol Biol. 2020;2115:385-405 pubmed publisher
Espino Saldaña A, Durán Ríos K, Olivares Hernandez E, Rodríguez Ortiz R, Arellano Carbajal F, Martinez Torres A. Temporal and spatial expression of zebrafish mctp genes and evaluation of frameshift alleles of mctp2b. Gene. 2020;738:144371 pubmed publisher
Toms M, Dubis A, de Vrieze E, Tracey White D, Mitsios A, Hayes M, et al. Clinical and preclinical therapeutic outcome metrics for USH2A-related disease. Hum Mol Genet. 2020;29:1882-1899 pubmed publisher
Wierson W, Simone B, WareJoncas Z, Mann C, Welker J, Kar B, et al. Expanding the CRISPR Toolbox with ErCas12a in Zebrafish and Human Cells. CRISPR J. 2019;2:417-433 pubmed publisher
Datsomor A, Olsen R, Zic N, Madaro A, Bones A, Edvardsen R, et al. CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci Rep. 2019;9:16888 pubmed publisher
Chen C, Huang H, Yan R, Lin S, Qin W. Loss of rps9 in Zebrafish Leads to p53-Dependent Anemia. G3 (Bethesda). 2019;9:4149-4157 pubmed publisher
Eschstruth A, Schneider Maunoury S, Giudicelli F. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination. Genesis. 2019;:e23340 pubmed publisher
Gudmundsson S, Wilbe M, Filipek Gorniok B, Molin A, Ekvall S, Johansson J, et al. TAF1, associated with intellectual disability in humans, is essential for embryogenesis and regulates neurodevelopmental processes in zebrafish. Sci Rep. 2019;9:10730 pubmed publisher
Shainer I, Michel M, Marquart G, Bhandiwad A, Zmora N, Ben Moshe Livne Z, et al. Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Curr Biol. 2019;: pubmed publisher
Banerjee T, Monteiro A. CRISPR-Cas9 Mediated Genome Editing in Bicyclus anynana Butterflies. Methods Protoc. 2018;1: pubmed publisher
Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, et al. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development. 2019;146: pubmed publisher
Marivin A, Morozova V, Walawalkar I, Leyme A, Kretov D, Cifuentes D, et al. GPCR-independent activation of G proteins promotes apical cell constriction in vivo. J Cell Biol. 2019;218:1743-1763 pubmed publisher
Faught E, Vijayan M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci Rep. 2018;8:18081 pubmed publisher
Qin W, Lu X, Liu Y, Bai H, Li S, Lin S. Precise A•T to G•C base editing in the zebrafish genome. BMC Biol. 2018;16:139 pubmed publisher
Wada S, Shen B, Kawano Yamashita E, Nagata T, Hibi M, Tamotsu S, et al. Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proc Natl Acad Sci U S A. 2018;115:11310-11315 pubmed publisher
Slijkerman R, Goloborodko A, Broekman S, de Vrieze E, Hetterschijt L, Peters T, et al. Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in USH2A. Zebrafish. 2018;15:597-609 pubmed publisher
Zelinka C, Sotolongo Lopez M, Fadool J. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod photoreceptor degeneration. Mol Vis. 2018;24:587-602 pubmed
Ata H, Ekstrom T, Martínez Gálvez G, Mann C, Dvornikov A, Schaefbauer K, et al. Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet. 2018;14:e1007652 pubmed publisher
Unal Eroglu A, Mulligan T, Zhang L, White D, Sengupta S, Nie C, et al. Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration. Front Cell Dev Biol. 2018;6:88 pubmed publisher
Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, Dumitru A, et al. A molecular mechanism for Wnt ligand-specific signaling. Science. 2018;361: pubmed publisher
Astone M, Lai J, Dupont S, Stainier D, Argenton F, Vettori A. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci Rep. 2018;8:10189 pubmed publisher
Prykhozhij S, Fuller C, Steele S, Veinotte C, Razaghi B, Robitaille J, et al. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res. 2018;46:e102 pubmed publisher
Dona M, Slijkerman R, Lerner K, Broekman S, Wegner J, Howat T, et al. Usherin defects lead to early-onset retinal dysfunction in zebrafish. Exp Eye Res. 2018;173:148-159 pubmed publisher
Lai J, Collins M, Uribe V, Jiménez Amilburu V, Günther S, Maischein H, et al. The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development. 2018;145: pubmed publisher
Earley A, Dixon C, Shiau C. Genetic analysis of zebrafish homologs of human FOXQ1, foxq1a and foxq1b, in innate immune cell development and bacterial host response. PLoS ONE. 2018;13:e0194207 pubmed publisher
Prabhudesai S, Koceja C, Dey A, Eisa Beygi S, Leigh N, Bhattacharya R, et al. Cystathionine ?-Synthase Is Necessary for Axis Development in Vivo. Front Cell Dev Biol. 2018;6:14 pubmed publisher
Prakash A, Monteiro A. apterous A specifies dorsal wing patterns and sexual traits in butterflies. Proc Biol Sci. 2018;285: pubmed publisher
Crowder C, Lassiter C, Gorelick D. Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology. 2018;159:980-993 pubmed publisher
Mo E, Cheng Q, Reshetnyak A, Schlessinger J, Nicoli S. Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc Natl Acad Sci U S A. 2017;114:12027-12032 pubmed publisher
Romano S, Edwards H, Souder J, Ryan K, Cui X, Gorelick D. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genet. 2017;13:e1007069 pubmed publisher
Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed publisher
Burns A, Miller E, Agarwal M, Rolig A, Milligan Myhre K, Seredick S, et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc Natl Acad Sci U S A. 2017;114:11181-11186 pubmed publisher
Wehner D, Tsarouchas T, Michael A, Haase C, Weidinger G, Reimer M, et al. Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun. 2017;8:126 pubmed publisher
Lupton C, Sengupta M, Cheng R, Chia J, Thirumalai V, Jesuthasan S. Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish. Eneuro. 2017;4: pubmed publisher
Akerberg A, Henner A, Stewart S, Stankunas K. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation. Dev Biol. 2017;426:84-96 pubmed publisher
Gudipaty S, Lindblom J, Loftus P, Redd M, Edes K, Davey C, et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 2017;543:118-121 pubmed publisher
Sasaki T, Lian S, Khan A, Llop J, Samuelson A, Chen W, et al. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy. 2017;13:386-403 pubmed publisher
Varshney G, Carrington B, Pei W, Bishop K, Chen Z, Fan C, et al. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat Protoc. 2016;11:2357-2375 pubmed publisher
Hang C, Moriya S, Ogawa S, Parhar I. Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorion Formation and Embryonic Hatching in the Zebrafish. PLoS ONE. 2016;11:e0165535 pubmed publisher
Vejnar C, Moreno Mateos M, Cifuentes D, Bazzini A, Giraldez A. Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish. Cold Spring Harb Protoc. 2016;2016: pubmed publisher
Shah A, Moens C, Miller A. Targeted candidate gene screens using CRISPR/Cas9 technology. Methods Cell Biol. 2016;135:89-106 pubmed publisher
Cortes M, Liu S, Kwan W, Alexa K, Goessling W, North T. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation. Stem Cell Reports. 2015;5:471-9 pubmed publisher
Carrington B, Varshney G, Burgess S, Sood R. CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res. 2015;43:e157 pubmed publisher
Thomas H, Percival S, Yoder B, Parant J. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS ONE. 2014;9:e114632 pubmed publisher
Edvardsen R, Leininger S, Kleppe L, Skaftnesmo K, Wargelius A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE. 2014;9:e108622 pubmed publisher
Jao L, Wente S, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A. 2013;110:13904-9 pubmed publisher
product information
Catalog Number :
46757
Product Name :
pT3TS-nCas9n
article :
doi10.1073/pnas.1308335110
id7188
pubmed_id23918387
bacterial resistance :
Ampicillin
cloning :
backbonepT3T7
backbone_mutation
backbone_origin
backbone_size2800
promoter
sequencing_primer_3
sequencing_primer_5
vector_types
Bacterial Expression
CRISPR
growth notes :
For more information on Chen and Wente Lab CRISPR Plasmids please refer to: http://www.addgene.org/crispr/Chen/
origin :
37
pi :
alt_names
csn1
cloning
clone_methodRestriction Enzyme
cloning_site_3XbaI
cloning_site_5HindIII
promoterT3
sequencing_primer_3M13 F
sequencing_primer_5M13 R
site_3_destroyed
site_5_destroyed
entrez_gene
genbank_ids
mutation
nameCas9
shRNA_sequence
size4400
species
100
Synthetic
tags
locationN terminal on insert
tagSV40 NLS
locationC terminal on insert
tagSV40 NLS
resistance markers :
1611
tags :
High Copy
company information
Addgene
490 Arsenal Way, Suite 100
Watertown, MA 02472
info@addgene.org
https://www.addgene.org
617.225.9000
headquarters: USA