Reference |
---|
Gourgues G, Manso Silv xe1 n L, Chamberland C, Sirand Pugnet P, Thiaucourt F, Blanchard A, et al. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. Microbiology (Reading). 2024;170: pubmed publisher
|
Fasken M, Leung S, Cureton L, Al Awadi M, Al Kindy A, Khoshnevis S, et al. A Biallelic Variant of the RNA Exosome Gene EXOSC4 Causes Translational Defects Associated with a Neurodevelopmental Disorder. medRxiv. 2023;: pubmed publisher
|
Mendoza B, Zheng X, Clements J, Cotter C, Trinh C. Potency of CRISPR-Cas Antifungals Is Enhanced by Cotargeting DNA Repair and Growth Regulatory Machinery at the Genetic Level. ACS Infect Dis. 2023;9:2494-2503 pubmed publisher
|
Sterrett M, Cureton L, Cohen L, van Hoof A, Khoshnevis S, Fasken M, et al. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. bioRxiv. 2023;: pubmed publisher
|
Zhao Y, Coelho C, Lauer S, Majewski M, Laurent J, Brosh R, et al. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast. Nucleic Acids Res. 2023;51:e72 pubmed publisher
|
Park J, Bassalo M, Lin G, Chen Y, Doosthosseini H, Schmitz J, et al. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol. 2023;12:1119-1132 pubmed publisher
|
x17d un G, Dober x161 ek K, Petrovi x10d U. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9. Yeast. 2022;: pubmed publisher
|
Schubert O, Bloom J, Sadhu M, Kruglyak L. Genome-wide base editor screen identifies regulators of protein abundance in yeast. elife. 2022;11: pubmed publisher
|
Fujii H, Fujita T. An enChIP system for the analysis of genome functions in budding yeast. Biol Methods Protoc. 2022;7:bpac025 pubmed publisher
|
Souffriau B, Holt S, Hagman A, De Graeve S, Malcorps P, Foulqui xe9 Moreno M, et al. Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol. 2022;88:e0081422 pubmed publisher
|
Li A, Mitsunobu H, Yoshioka S, Suzuki T, Kondo A, Nishida K. Cytosine base editing systems with minimized off-target effect and molecular size. Nat Commun. 2022;13:4531 pubmed publisher
|
Vos P, Rossetti G, Mantegna J, Siira S, Gandadireja A, Bruce M, et al. Computationally designed hyperactive Cas9 enzymes. Nat Commun. 2022;13:3023 pubmed publisher
|
Xu L, Wang D, Chen J, Li B, Li Q, Liu P, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng. 2022;70:115-128 pubmed publisher
|
Naseri G, Prause K, Hamdo H, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol. 2021;9:676900 pubmed publisher
|
Hassan N, Easmin F, Ekino K, Harashima S. PCR-mediated One-day Synthesis of Guide RNA for the CRISPR/Cas9 System. Bio Protoc. 2021;11:e4082 pubmed publisher
|
Collins J, Keating K, Jones T, Balaji S, Marsan C, Çomo M, et al. Engineered yeast genomes accurately assembled from pure and mixed samples. Nat Commun. 2021;12:1485 pubmed publisher
|
Hu Z, Li H, Weng Y, Li P, Zhang C, Xiao D. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. J Ind Microbiol Biotechnol. 2020;47:1083-1097 pubmed publisher
|
Barber J, Sezmis A, Woods L, Anderson T, Voss J, McDonald M. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 2020;: pubmed publisher
|
Hu Z, Lin L, Li H, Li P, Weng Y, Zhang C, et al. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. J Ind Microbiol Biotechnol. 2020;47:511-523 pubmed publisher
|
Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng. 2020;60:87-96 pubmed publisher
|
Hoang Nguyen Tran P, Ko J, Gong G, Um Y, Lee S. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels. 2020;13:12 pubmed publisher
|
Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31-42 pubmed publisher
|
Easmin F, Sasano Y, Kimura S, Hassan N, Ekino K, Taguchi H, et al. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng. 2020;129:129-139 pubmed publisher
|
Chen J, Tang J, Xi Y, Dai Z, Bi C, Chen X, et al. Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Appl Microbiol Biotechnol. 2019;103:8363-8374 pubmed publisher
|
Shao Y, Lu N, Xue X, Qin Z. Creating functional chromosome fusions in yeast with CRISPR-Cas9. Nat Protoc. 2019;14:2521-2545 pubmed publisher
|
Easmin F, Hassan N, Sasano Y, Ekino K, Taguchi H, Harashima S. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. J Biosci Bioeng. 2019;: pubmed publisher
|
Kruis A, Gallone B, Jonker T, Mars A, van Rijswijck I, Wolkers Rooijackers J, et al. Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Front Microbiol. 2018;9:3202 pubmed publisher
|
Dunayevich P, Baltanás R, Clemente J, Couto A, Sapochnik D, Vasen G, et al. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 2018;8:15168 pubmed publisher
|
Tran Nguyen Hoang P, Ko J, Gong G, Um Y, Lee S. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels. 2018;11:268 pubmed publisher
|
Dank A, Smid E, Notebaart R. CRISPR-Cas genome engineering of esterase activity in Saccharomyces cerevisiae steers aroma formation. BMC Res Notes. 2018;11:682 pubmed publisher
|
Després P, Dubé A, Nielly Thibault L, Yachie N, Landry C. Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast. G3 (Bethesda). 2018;8:3163-3171 pubmed publisher
|
Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang L, et al. Creating a functional single-chromosome yeast. Nature. 2018;560:331-335 pubmed publisher
|
Levisson M, Patinios C, Hein S, de Groot P, Daran J, Hall R, et al. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17:103 pubmed publisher
|
Lancrey A, Joubert A, Boulé J. Locus specific engineering of tandem DNA repeats in the genome of Saccharomyces cerevisiae using CRISPR/Cas9 and overlapping oligonucleotides. Sci Rep. 2018;8:7127 pubmed publisher
|
Marad D, Buskirk S, Lang G. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol. 2018;2:882-889 pubmed publisher
|
Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36:265-271 pubmed publisher
|
Xie Z, Mitchell L, Liu H, Li B, Liu D, Agmon N, et al. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Saccharomyces cerevisiae. G3 (Bethesda). 2018;8:173-183 pubmed publisher
|
Machens F, Balazadeh S, Mueller Roeber B, Messerschmidt K. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae. Front Bioeng Biotechnol. 2017;5:63 pubmed publisher
|
Giersch R, Finnigan G. Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences. Bio Protoc. 2017;7: pubmed publisher
|
Hochrein L, Machens F, Messerschmidt K, Mueller Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res. 2017;45:9193-9205 pubmed publisher
|
Numamoto M, Maekawa H, Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng. 2017;124:487-492 pubmed publisher
|
Gorkovskiy A, Reidy M, Masison D, Wickner R. Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A. 2017;114:E4193-E4202 pubmed publisher
|
Vanegas K, Lehka B, Mortensen U. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16:25 pubmed publisher
|
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun. 2017;8:14153 pubmed publisher
|
Hochrein L, Machens F, Gremmels J, Schulz K, Messerschmidt K, Mueller Roeber B. AssemblX: a user-friendly toolkit for rapid and reliable multi-gene assemblies. Nucleic Acids Res. 2017;45:e80 pubmed publisher
|
Sonawane P, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants. 2016;3:16205 pubmed publisher
|
Calegario G, Pollier J, Arendt P, de Oliveira L, Thompson C, Soares A, et al. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS ONE. 2016;11:e0165954 pubmed publisher
|
Klein M, Carrillo M, Xiberras J, Islam Z, Swinnen S, Nevoigt E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng. 2016;38:464-472 pubmed publisher
|
Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep. 2016;6:30278 pubmed publisher
|
Mans R, van Rossum H, Wijsman M, Backx A, Kuijpers N, van den Broek M, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15: pubmed publisher
|
Waldrip Z, Byrum S, Storey A, Gao J, Byrd A, Mackintosh S, et al. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics. 2014;9:1207-11 pubmed publisher
|
Dicarlo J, Norville J, Mali P, Rios X, Aach J, Church G. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336-43 pubmed publisher
|