This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Addgene
product type :
cDNA
product name :
p426-SNR52p-gRNA.CAN1.Y-SUP4t
catalog :
43803
citations: 52
Reference
Gourgues G, Manso Silv xe1 n L, Chamberland C, Sirand Pugnet P, Thiaucourt F, Blanchard A, et al. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. Microbiology (Reading). 2024;170: pubmed publisher
Fasken M, Leung S, Cureton L, Al Awadi M, Al Kindy A, Khoshnevis S, et al. A Biallelic Variant of the RNA Exosome Gene EXOSC4 Causes Translational Defects Associated with a Neurodevelopmental Disorder. medRxiv. 2023;: pubmed publisher
Mendoza B, Zheng X, Clements J, Cotter C, Trinh C. Potency of CRISPR-Cas Antifungals Is Enhanced by Cotargeting DNA Repair and Growth Regulatory Machinery at the Genetic Level. ACS Infect Dis. 2023;9:2494-2503 pubmed publisher
Sterrett M, Cureton L, Cohen L, van Hoof A, Khoshnevis S, Fasken M, et al. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. bioRxiv. 2023;: pubmed publisher
Zhao Y, Coelho C, Lauer S, Majewski M, Laurent J, Brosh R, et al. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast. Nucleic Acids Res. 2023;51:e72 pubmed publisher
Park J, Bassalo M, Lin G, Chen Y, Doosthosseini H, Schmitz J, et al. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol. 2023;12:1119-1132 pubmed publisher
x17d un G, Dober x161 ek K, Petrovi x10d U. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9. Yeast. 2022;: pubmed publisher
Schubert O, Bloom J, Sadhu M, Kruglyak L. Genome-wide base editor screen identifies regulators of protein abundance in yeast. elife. 2022;11: pubmed publisher
Fujii H, Fujita T. An enChIP system for the analysis of genome functions in budding yeast. Biol Methods Protoc. 2022;7:bpac025 pubmed publisher
Souffriau B, Holt S, Hagman A, De Graeve S, Malcorps P, Foulqui xe9 Moreno M, et al. Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol. 2022;88:e0081422 pubmed publisher
Li A, Mitsunobu H, Yoshioka S, Suzuki T, Kondo A, Nishida K. Cytosine base editing systems with minimized off-target effect and molecular size. Nat Commun. 2022;13:4531 pubmed publisher
Vos P, Rossetti G, Mantegna J, Siira S, Gandadireja A, Bruce M, et al. Computationally designed hyperactive Cas9 enzymes. Nat Commun. 2022;13:3023 pubmed publisher
Xu L, Wang D, Chen J, Li B, Li Q, Liu P, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng. 2022;70:115-128 pubmed publisher
Naseri G, Prause K, Hamdo H, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol. 2021;9:676900 pubmed publisher
Hassan N, Easmin F, Ekino K, Harashima S. PCR-mediated One-day Synthesis of Guide RNA for the CRISPR/Cas9 System. Bio Protoc. 2021;11:e4082 pubmed publisher
Collins J, Keating K, Jones T, Balaji S, Marsan C, Çomo M, et al. Engineered yeast genomes accurately assembled from pure and mixed samples. Nat Commun. 2021;12:1485 pubmed publisher
Hu Z, Li H, Weng Y, Li P, Zhang C, Xiao D. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. J Ind Microbiol Biotechnol. 2020;47:1083-1097 pubmed publisher
Barber J, Sezmis A, Woods L, Anderson T, Voss J, McDonald M. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 2020;: pubmed publisher
Hu Z, Lin L, Li H, Li P, Weng Y, Zhang C, et al. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. J Ind Microbiol Biotechnol. 2020;47:511-523 pubmed publisher
Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng. 2020;60:87-96 pubmed publisher
Hoang Nguyen Tran P, Ko J, Gong G, Um Y, Lee S. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels. 2020;13:12 pubmed publisher
Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31-42 pubmed publisher
Easmin F, Sasano Y, Kimura S, Hassan N, Ekino K, Taguchi H, et al. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng. 2020;129:129-139 pubmed publisher
Chen J, Tang J, Xi Y, Dai Z, Bi C, Chen X, et al. Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Appl Microbiol Biotechnol. 2019;103:8363-8374 pubmed publisher
Shao Y, Lu N, Xue X, Qin Z. Creating functional chromosome fusions in yeast with CRISPR-Cas9. Nat Protoc. 2019;14:2521-2545 pubmed publisher
Easmin F, Hassan N, Sasano Y, Ekino K, Taguchi H, Harashima S. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. J Biosci Bioeng. 2019;: pubmed publisher
Kruis A, Gallone B, Jonker T, Mars A, van Rijswijck I, Wolkers Rooijackers J, et al. Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Front Microbiol. 2018;9:3202 pubmed publisher
Dunayevich P, Baltanás R, Clemente J, Couto A, Sapochnik D, Vasen G, et al. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 2018;8:15168 pubmed publisher
Tran Nguyen Hoang P, Ko J, Gong G, Um Y, Lee S. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels. 2018;11:268 pubmed publisher
Dank A, Smid E, Notebaart R. CRISPR-Cas genome engineering of esterase activity in Saccharomyces cerevisiae steers aroma formation. BMC Res Notes. 2018;11:682 pubmed publisher
Després P, Dubé A, Nielly Thibault L, Yachie N, Landry C. Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast. G3 (Bethesda). 2018;8:3163-3171 pubmed publisher
Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang L, et al. Creating a functional single-chromosome yeast. Nature. 2018;560:331-335 pubmed publisher
Levisson M, Patinios C, Hein S, de Groot P, Daran J, Hall R, et al. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17:103 pubmed publisher
Lancrey A, Joubert A, Boulé J. Locus specific engineering of tandem DNA repeats in the genome of Saccharomyces cerevisiae using CRISPR/Cas9 and overlapping oligonucleotides. Sci Rep. 2018;8:7127 pubmed publisher
Marad D, Buskirk S, Lang G. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol. 2018;2:882-889 pubmed publisher
Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36:265-271 pubmed publisher
Xie Z, Mitchell L, Liu H, Li B, Liu D, Agmon N, et al. Rapid and Efficient CRISPR/Cas9-Based Mating-Type Switching of Saccharomyces cerevisiae. G3 (Bethesda). 2018;8:173-183 pubmed publisher
Machens F, Balazadeh S, Mueller Roeber B, Messerschmidt K. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae. Front Bioeng Biotechnol. 2017;5:63 pubmed publisher
Giersch R, Finnigan G. Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences. Bio Protoc. 2017;7: pubmed publisher
Hochrein L, Machens F, Messerschmidt K, Mueller Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res. 2017;45:9193-9205 pubmed publisher
Numamoto M, Maekawa H, Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng. 2017;124:487-492 pubmed publisher
Gorkovskiy A, Reidy M, Masison D, Wickner R. Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A. 2017;114:E4193-E4202 pubmed publisher
Vanegas K, Lehka B, Mortensen U. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16:25 pubmed publisher
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun. 2017;8:14153 pubmed publisher
Hochrein L, Machens F, Gremmels J, Schulz K, Messerschmidt K, Mueller Roeber B. AssemblX: a user-friendly toolkit for rapid and reliable multi-gene assemblies. Nucleic Acids Res. 2017;45:e80 pubmed publisher
Sonawane P, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants. 2016;3:16205 pubmed publisher
Calegario G, Pollier J, Arendt P, de Oliveira L, Thompson C, Soares A, et al. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS ONE. 2016;11:e0165954 pubmed publisher
Klein M, Carrillo M, Xiberras J, Islam Z, Swinnen S, Nevoigt E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng. 2016;38:464-472 pubmed publisher
Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep. 2016;6:30278 pubmed publisher
Mans R, van Rossum H, Wijsman M, Backx A, Kuijpers N, van den Broek M, et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15: pubmed publisher
Waldrip Z, Byrum S, Storey A, Gao J, Byrd A, Mackintosh S, et al. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics. 2014;9:1207-11 pubmed publisher
Dicarlo J, Norville J, Mali P, Rios X, Aach J, Church G. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336-43 pubmed publisher
product information
Catalog Number :
43803
Product Name :
p426-SNR52p-gRNA.CAN1.Y-SUP4t
article :
doi10.1093/nar/gkt135
id6442
pubmed_id23460208
bacterial resistance :
Ampicillin
cloning :
backbonep426
backbone_mutation
backbone_origin
backbone_size5886
promoter
sequencing_primer_3
sequencing_primer_5
vector_types
Yeast Expression
CRISPR
growth notes :
For more information on Church Lab CRISPR Plasmids please refer to: http://www.addgene.org/crispr/church/ gRNA target sequence GATACGTTCTCTATGGAGGA
growth strain :
Encodes a gRNA that targets Can1.Y in yeast.
origin :
30
pi :
alt_names
cloning
clone_methodUnknown
cloning_site_3
cloning_site_5
promoterSNR52
sequencing_primer_3T7 promoter
sequencing_primer_5T3 promoter
site_3_destroyed
site_5_destroyed
entrez_gene
aliasesYEL063C
geneCAN1
id856646
genbank_ids
mutation
nameCAN1.y gRNA
shRNA_sequence
size488
species
4932
Saccharomyces cerevisiae
tags
resistance markers :
765
tags :
High Copy
terms :
URA3
company information
Addgene
490 Arsenal Way, Suite 100
Watertown, MA 02472
info@addgene.org
https://www.addgene.org
617.225.9000
headquarters: USA