This webpage contains legacy information. The product is either no longer available from the supplier or has been delisted at Labome.
product summary
company name :
Addgene
product type :
cDNA
product name :
p414-TEF1p-Cas9-CYC1t
catalog :
43802
citations: 59
Reference
Gourgues G, Manso Silv xe1 n L, Chamberland C, Sirand Pugnet P, Thiaucourt F, Blanchard A, et al. A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. Microbiology (Reading). 2024;170: pubmed publisher
Fasken M, Leung S, Cureton L, Al Awadi M, Al Kindy A, Khoshnevis S, et al. A Biallelic Variant of the RNA Exosome Gene EXOSC4 Causes Translational Defects Associated with a Neurodevelopmental Disorder. medRxiv. 2023;: pubmed publisher
Sterrett M, Cureton L, Cohen L, van Hoof A, Khoshnevis S, Fasken M, et al. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. bioRxiv. 2023;: pubmed publisher
Zhao Y, Coelho C, Lauer S, Majewski M, Laurent J, Brosh R, et al. CREEPY: CRISPR-mediated editing of synthetic episomes in yeast. Nucleic Acids Res. 2023;51:e72 pubmed publisher
Machens F, Ran G, Ruehmkorff C, Meyer Auf der Heyde J, Mueller Roeber B, Hochrein L. PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in Saccharomyces cerevisiae. ACS Synth Biol. 2023;12:1046-1057 pubmed publisher
Wolf I, Marques L, de Almeida L, L xe1 zari L, de Moraes L, Cardoso L, et al. Integrative Analysis of the Ethanol Tolerance of Saccharomyces cerevisiae. Int J Mol Sci. 2023;24: pubmed publisher
x17d un G, Dober x161 ek K, Petrovi x10d U. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9. Yeast. 2022;: pubmed publisher
Schubert O, Bloom J, Sadhu M, Kruglyak L. Genome-wide base editor screen identifies regulators of protein abundance in yeast. elife. 2022;11: pubmed publisher
Fujii H, Fujita T. An enChIP system for the analysis of genome functions in budding yeast. Biol Methods Protoc. 2022;7:bpac025 pubmed publisher
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, et al. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. Bioresour Technol. 2022;365:128179 pubmed publisher
Souffriau B, Holt S, Hagman A, De Graeve S, Malcorps P, Foulqui xe9 Moreno M, et al. Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals MDS3 as Major Causative Gene. Appl Environ Microbiol. 2022;88:e0081422 pubmed publisher
Malubhoy Z, Bahia F, de Valk S, de Hulster E, Rendulić T, Ortiz J, et al. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact. 2022;21:102 pubmed publisher
Lázari L, Wolf I, Schnepper A, Valente G. LncRNAs of Saccharomyces cerevisiae bypass the cell cycle arrest imposed by ethanol stress. PLoS Comput Biol. 2022;18:e1010081 pubmed publisher
Lancrey A, Joubert A, Duvernois Berthet E, Routhier E, Raj S, Thierry A, et al. Nucleosome Positioning on Large Tandem DNA Repeats of the '601' Sequence Engineered in Saccharomyces cerevisiae. J Mol Biol. 2022;434:167497 pubmed publisher
Xu L, Wang D, Chen J, Li B, Li Q, Liu P, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng. 2022;70:115-128 pubmed publisher
Hassan N, Easmin F, Ekino K, Harashima S. PCR-mediated One-day Synthesis of Guide RNA for the CRISPR/Cas9 System. Bio Protoc. 2021;11:e4082 pubmed publisher
Xu L, Liu P, Dai Z, Fan F, Zhang X. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microb Cell Fact. 2021;20:148 pubmed publisher
Jensen E, Laloux M, Lehka B, Pedersen L, Jakočiūnas T, Jensen M, et al. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res. 2021;: pubmed publisher
Collins J, Keating K, Jones T, Balaji S, Marsan C, Çomo M, et al. Engineered yeast genomes accurately assembled from pure and mixed samples. Nat Commun. 2021;12:1485 pubmed publisher
Manger S, Ermel U, Frangakis A. Ex vivo visualization of RNA polymerase III-specific gene activity with electron microscopy. Commun Biol. 2021;4:234 pubmed publisher
Liu M, Lin Y, Guo J, DU M, Tao X, Gao B, et al. High-Level Production of Sesquiterpene Patchoulol in Saccharomyces cerevisiae. ACS Synth Biol. 2021;10:158-172 pubmed publisher
Hu Z, Li H, Weng Y, Li P, Zhang C, Xiao D. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. J Ind Microbiol Biotechnol. 2020;47:1083-1097 pubmed publisher
Barber J, Sezmis A, Woods L, Anderson T, Voss J, McDonald M. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 2020;: pubmed publisher
Hu Z, Lin L, Li H, Li P, Weng Y, Zhang C, et al. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. J Ind Microbiol Biotechnol. 2020;47:511-523 pubmed publisher
Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng. 2020;60:87-96 pubmed publisher
Hoang Nguyen Tran P, Ko J, Gong G, Um Y, Lee S. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels. 2020;13:12 pubmed publisher
Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, et al. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. 2020;57:31-42 pubmed publisher
Easmin F, Sasano Y, Kimura S, Hassan N, Ekino K, Taguchi H, et al. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng. 2020;129:129-139 pubmed publisher
Kim J, Lee Y, Kim S, Jin Y, Seo J. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. J Biotechnol. 2019;304:31-37 pubmed publisher
Chen J, Tang J, Xi Y, Dai Z, Bi C, Chen X, et al. Production of 14α-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14α-hydroxylation system. Appl Microbiol Biotechnol. 2019;103:8363-8374 pubmed publisher
Kruis A, Gallone B, Jonker T, Mars A, van Rijswijck I, Wolkers Rooijackers J, et al. Contribution of Eat1 and Other Alcohol Acyltransferases to Ester Production in Saccharomyces cerevisiae. Front Microbiol. 2018;9:3202 pubmed publisher
Elison G, Xue Y, Song R, Acar M. Insights into Bidirectional Gene Expression Control Using the Canonical GAL1/GAL10 Promoter. Cell Rep. 2018;25:737-748.e4 pubmed publisher
Dunayevich P, Baltanás R, Clemente J, Couto A, Sapochnik D, Vasen G, et al. Heat-stress triggers MAPK crosstalk to turn on the hyperosmotic response pathway. Sci Rep. 2018;8:15168 pubmed publisher
Tran Nguyen Hoang P, Ko J, Gong G, Um Y, Lee S. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels. 2018;11:268 pubmed publisher
Sharon E, Chen S, Khosla N, Smith J, Pritchard J, Fraser H. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. 2018;175:544-557.e16 pubmed publisher
Dong L, Pollier J, Bassard J, Ntallas G, Almeida A, Lazaridi E, et al. Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng. 2018;49:1-12 pubmed publisher
Levisson M, Patinios C, Hein S, de Groot P, Daran J, Hall R, et al. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17:103 pubmed publisher
Mans R, Wijsman M, Daran Lapujade P, Daran J. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Res. 2018;18: pubmed publisher
Lancrey A, Joubert A, Boulé J. Locus specific engineering of tandem DNA repeats in the genome of Saccharomyces cerevisiae using CRISPR/Cas9 and overlapping oligonucleotides. Sci Rep. 2018;8:7127 pubmed publisher
Marad D, Buskirk S, Lang G. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol. 2018;2:882-889 pubmed publisher
Bracher J, Verhoeven M, Wisselink H, Crimi B, Nijland J, Driessen A, et al. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. Biotechnol Biofuels. 2018;11:63 pubmed publisher
Liu B, Olson A, Wu M, Broberg A, Sandgren M. Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation. PLoS ONE. 2017;12:e0189479 pubmed publisher
Swiat M, Dashko S, den Ridder M, Wijsman M, van der Oost J, Daran J, et al. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res. 2017;45:12585-12598 pubmed publisher
Hochrein L, Machens F, Messerschmidt K, Mueller Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res. 2017;45:9193-9205 pubmed publisher
Numamoto M, Maekawa H, Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng. 2017;124:487-492 pubmed publisher
Löbs A, Engel R, Schwartz C, Flores A, Wheeldon I. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol Biofuels. 2017;10:164 pubmed publisher
Gorkovskiy A, Reidy M, Masison D, Wickner R. Hsp104 disaggregase at normal levels cures many [PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A. 2017;114:E4193-E4202 pubmed publisher
Vanegas K, Lehka B, Mortensen U. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16:25 pubmed publisher
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun. 2017;8:14153 pubmed publisher
Elison G, Song R, Acar M. A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters. Cell Rep. 2017;18:275-286 pubmed publisher
Sonawane P, Pollier J, Panda S, Szymanski J, Massalha H, Yona M, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants. 2016;3:16205 pubmed publisher
Calegario G, Pollier J, Arendt P, de Oliveira L, Thompson C, Soares A, et al. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS ONE. 2016;11:e0165954 pubmed publisher
Klein M, Carrillo M, Xiberras J, Islam Z, Swinnen S, Nevoigt E. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng. 2016;38:464-472 pubmed publisher
Arras S, Chua S, Wizrah M, Faint J, Yap A, Fraser J. Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans. PLoS ONE. 2016;11:e0164322 pubmed publisher
Chin Y, Kang W, Jang H, Turner T, Kim H. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2016;43:1517-1525 pubmed
Sasano Y, Nagasawa K, Kaboli S, Sugiyama M, Harashima S. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep. 2016;6:30278 pubmed publisher
Dicarlo J, Chavez A, Dietz S, Esvelt K, Church G. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. 2015;33:1250-1255 pubmed publisher
Zhang G, Kong I, Kim H, Liu J, Cate J, Jin Y. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Appl Environ Microbiol. 2014;80:7694-701 pubmed publisher
Dicarlo J, Norville J, Mali P, Rios X, Aach J, Church G. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336-43 pubmed publisher
product information
Catalog Number :
43802
Product Name :
p414-TEF1p-Cas9-CYC1t
article :
doi10.1093/nar/gkt135
id6442
pubmed_id23460208
bacterial resistance :
Ampicillin
cloning :
backbonep414
backbone_mutation
backbone_origin
backbone_size5385
promoter
sequencing_primer_3
sequencing_primer_5
vector_types
Yeast Expression
CRISPR
growth notes :
For more information on Church Lab CRISPR Plasmids please refer to: http://www.addgene.org/crispr/church/
origin :
30
pi :
alt_names
cloning
clone_methodUnknown
cloning_site_3
cloning_site_5
promoterTEF1 promoter
sequencing_primer_3T7 promoter
sequencing_primer_5T3 promoter
site_3_destroyed
site_5_destroyed
entrez_gene
genbank_ids
mutation
nameHuman Optimized S. pyogenes Cas9
shRNA_sequence
size4140
species
9606
Homo sapiens
4932
Saccharomyces cerevisiae
S.pyogenes
tags
plasmid copy :
Addgene Plasmid 41815 from Prashant Mali
resistance markers :
765
tags :
Low Copy
terms :
TRP1
company information
Addgene
490 Arsenal Way, Suite 100
Watertown, MA 02472
info@addgene.org
https://www.addgene.org
617.225.9000
headquarters: USA