Reference |
---|
Villar Pazos S, Thomas L, Yang Y, Chen K, Lyles J, Deitch B, et al. Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy. Nat Commun. 2023;14:6547 pubmed publisher
|
Thomas G, Villar Pazos S, Thomas L, Yang Y, Chen K, Lyles J, et al. RNA-targeted therapy corrects neuronal deficits in PACS1 syndrome mice. Res Sq. 2023;: pubmed publisher
|
Garcia Morato J, Hans F, von Zweydorf F, Feederle R, Els xe4 sser S, Skodras A, et al. Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nat Commun. 2022;13:1223 pubmed publisher
|
Shimizu K, Gi M, Suzuki S, North B, Watahiki A, Fukumoto S, et al. Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Rep. 2021;37:109988 pubmed publisher
|
Curry A, Cohen I, Zheng S, Wohlfahrt J, White D, Donu D, et al. Profiling sirtuin activity using Copper-free click chemistry. Bioorg Chem. 2021;117:105413 pubmed publisher
|
Minten E, Kapoor Vazirani P, Li C, Zhang H, Balakrishnan K, Yu D. SIRT2 promotes BRCA1-BARD1 heterodimerization through deacetylation. Cell Rep. 2021;34:108921 pubmed publisher
|
Hisahara S, Iwahara N, Matsushita T, Suzuki S, Matsumura A, Fujikura M, et al. SIRT1 decelerates morphological processing of oligodendrocyte cell lines and regulates the expression of cytoskeleton-related oligodendrocyte proteins. Biochem Biophys Res Commun. 2021;546:7-14 pubmed publisher
|
Zheng S, Wohlfahrt J, Cohen I, Cen Y. Methods for studying human sirtuins with activity-based chemical probes. Methods Enzymol. 2020;633:251-269 pubmed publisher
|
Wang X, Buechler N, Long D, Furdui C, Yoza B, McCall C, et al. Cysteine thiol oxidation on SIRT2 regulates inflammation in obese mice with sepsis. Inflammation. 2019;42:156-169 pubmed publisher
|
Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta M, et al. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. elife. 2018;7: pubmed publisher
|
Graham E, Rymarchyk S, Wood M, Cen Y. Development of Activity-Based Chemical Probes for Human Sirtuins. ACS Chem Biol. 2018;13:782-792 pubmed publisher
|
Fischer A, Mühlhäuser W, Warscheid B, Radziwill G. Membrane localization of acetylated CNK1 mediates a positive feedback on RAF/ERK signaling. Sci Adv. 2017;3:e1700475 pubmed publisher
|
Singh P, Hanson P, Morris C. Sirtuin-2 Protects Neural Cells from Oxidative Stress and Is Elevated in Neurodegeneration. Parkinsons Dis. 2017;2017:2643587 pubmed publisher
|
Head P, Zhang H, Bastien A, Koyen A, Withers A, Daddacha W, et al. Sirtuin 2 mutations in human cancers impair its function in genome maintenance. J Biol Chem. 2017;292:9919-9931 pubmed publisher
|
Wang X, Buechler N, Martin A, Wells J, Yoza B, McCall C, et al. Sirtuin-2 Regulates Sepsis Inflammation in ob/ob Mice. PLoS ONE. 2016;11:e0160431 pubmed publisher
|
Liu H, Jiang F, Loo Y, Hsu S, Hsiang T, Marcotrigiano J, et al. Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine. 2016;9:195-206 pubmed publisher
|
Liu L, Arun A, Ellis L, Peritore C, Donmez G. SIRT2 enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci. 2014;6:184 pubmed publisher
|
Li Z, Xie Q, Chen Z, Lu S, Xia W. Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer. 2013;82:9-15 pubmed publisher
|
Sunami Y, Araki M, Hironaka Y, Morishita S, Kobayashi M, Liew E, et al. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells. PLoS ONE. 2013;8:e57633 pubmed publisher
|
Fatoba S, Tognetti S, Berto M, Leo E, Mulvey C, Godovac Zimmermann J, et al. Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation. Nucleic Acids Res. 2013;41:4065-79 pubmed publisher
|
Snider N, Leonard J, Kwan R, Griggs N, Rui L, Omary M. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J Cell Biol. 2013;200:241-7 pubmed publisher
|
North B, Marshall B, Borra M, Denu J, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11:437-44 pubmed
|