Published Application/Species/Sample/Dilution | Reference |
---|
- immunohistochemistry; mouse; 1:500; loading ...; fig s7b
| Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed publisher
|
- immunohistochemistry - free floating section; mouse; 1:1000; loading ...; fig 7d
| Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek D, et al. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis. 2021;159:105487 pubmed publisher
|
- immunohistochemistry; mouse; 1:500; loading ...; fig 4d
| Scherschel K, Bräuninger H, Mölders A, Erlenhardt N, Amin E, Jungen C, et al. Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci. 2021;22: pubmed publisher
|
- immunohistochemistry; mouse; 1:1000; loading ...; fig 6??s2a
| Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed publisher
|
- immunohistochemistry; mouse; 1:250; loading ...; fig 3c
| Ryan B, Bengoa Vergniory N, Williamson M, Kirkiz E, Roberts R, Corda G, et al. REST protects dopaminergic neurons from mitochondrial and α-synuclein oligomer pathology in an alpha synuclein overexpressing BAC-transgenic mouse model. J Neurosci. 2021;: pubmed publisher
|
- immunohistochemistry; rat; 1:500; loading ...; fig 3a
| Lisieski M, Karavidha K, Gheidi A, Garibyan R, Conti A, Morrow J, et al. Divergent effects of repeated cocaine and novel environment exposure on locus coeruleus c-fos expression and brain catecholamine concentrations in rats. Brain Behav. 2019;9:e01222 pubmed publisher
|
- immunocytochemistry; human; 1:1000; fig 7b
| Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed publisher
|
- immunohistochemistry - free floating section; mouse; 1:1000
| Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed publisher
|
- immunocytochemistry; mouse; 1:500; fig 4
| Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed publisher
|
- immunohistochemistry; mouse; 1:1000; fig 4
| Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed publisher
|
- immunohistochemistry - free floating section; rat; 1:400; fig 1
| Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed publisher
|
- immunohistochemistry - free floating section; mouse; fig s16
| Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed publisher
|
- immunohistochemistry - paraffin section; mouse; 1:100
| De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed publisher
|
| Strong C, Zhang J, Carrasco M, Kundu S, Boutin M, Vishwasrao H, et al. Functional brain region-specific neural spheroids for modeling neurological diseases and therapeutics screening. Commun Biol. 2023;6:1211 pubmed publisher
|
| Sela M, Poley M, Mora Raimundo P, Kagan S, Avital A, Kaduri M, et al. Brain-Targeted Liposomes Loaded with Monoclonal Antibodies Reduce Alpha-Synuclein Aggregation and Improve Behavioral Symptoms in Parkinson's Disease. Adv Mater. 2023;35:e2304654 pubmed publisher
|
| Chao C, Huang C, Cheng J, Chiou C, Lee I, Yang Y, et al. SRT1720 as an SIRT1 activator for alleviating paraquat-induced models of Parkinson's disease. Redox Biol. 2022;58:102534 pubmed publisher
|
| Kofoed R, Noseworthy K, Wu K, Sivadas S, Stanek L, Elmer B, et al. The engineered AAV2-HBKO promotes non-invasive gene delivery to large brain regions beyond ultrasound targeted sites. Mol Ther Methods Clin Dev. 2022;27:167-184 pubmed publisher
|
| Koba S, Kumada N, Narai E, Kataoka N, Nakamura K, Watanabe T. A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses. Nat Commun. 2022;13:5079 pubmed publisher
|
| Yang Y, He Y, Liu H, Zhou W, Wang C, Xu P, et al. Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Rep. 2021;37:110075 pubmed publisher
|
| Wang Y, Pang J, Wang Q, Yan L, Wang L, Xing Z, et al. Delivering Antisense Oligonucleotides across the Blood-Brain Barrier by Tumor Cell-Derived Small Apoptotic Bodies. Adv Sci (Weinh). 2021;8:2004929 pubmed publisher
|
| Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun. 2021;9:37 pubmed publisher
|
| Bengoa Vergniory N, Faggiani E, Ramos Gonzalez P, Kirkiz E, Connor Robson N, Brown L, et al. CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nat Commun. 2020;11:4885 pubmed publisher
|
| Kabayama H, Takeuchi M, Tokushige N, Muramatsu S, Kabayama M, Fukuda M, et al. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat Commun. 2020;11:336 pubmed publisher
|
| Mazzocchi M, Wyatt S, Mercatelli D, Morari M, Morales Prieto N, Collins L, et al. Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Front Cell Dev Biol. 2019;7:191 pubmed publisher
|
| Paul E, Kalk E, Tossell K, Irvine E, Franks N, Wisden W, et al. nNOS-Expressing Neurons in the Ventral Tegmental Area and Substantia Nigra Pars Compacta. Eneuro. 2018;5: pubmed publisher
|
| Han W, Tellez L, Perkins M, Perez I, Qu T, Ferreira J, et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175:665-678.e23 pubmed publisher
|
| Koba S, Hanai E, Kumada N, Kataoka N, Nakamura K, Watanabe T. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. J Physiol. 2018;596:4581-4595 pubmed publisher
|
| Blaudin de Thé F, Rekaik H, Peze Heidsieck E, Massiani Beaudoin O, Joshi R, Fuchs J, et al. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression. EMBO J. 2018;37: pubmed publisher
|
| Li S, Vaughan A, Sturgill J, Kepecs A. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons. Neuron. 2018;98:905-917.e5 pubmed publisher
|
| Wang L, Hong J, Wu Y, Liu G, Yu W, Chen L. Seipin deficiency in mice causes loss of dopaminergic neurons via aggregation and phosphorylation of ?-synuclein and neuroinflammation. Cell Death Dis. 2018;9:440 pubmed publisher
|
| Hammond S, Popichak K, Li X, Hunt L, Richman E, Damale P, et al. The Nurr1 Ligand,1,1-bis(3'-Indolyl)-1-(p-Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. J Pharmacol Exp Ther. 2018;365:636-651 pubmed publisher
|
| Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed publisher
|
| Bal N, Singh S, Reis F, Maurya S, Pani S, Rowland L, et al. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem. 2017;292:16616-16625 pubmed publisher
|